

0. Introduction.

1. Preliminaries.

2. The disjunctive and existence property.
3. The unification algorithm.

4. The final theorem.

5. Conclusion.

6. References.

Appendix.

v ©® W W 'W 'W W T

14
16
17

18

Intr ion

We are going to reconsider the existence property in
intuitionistic first order logic (IQC) with function symbols,

as presented in Dag Prawitz': "Natural Deduction, A Proof
Theoretical Study." That is, we will examine its formulation, and
try to give a constructive proof of the theorem. I mention in
particular the function symbols in IQC, because their presence
give rise to a new view on this property. Especially a tool from
resolution in automated theorem proving (Gallier [2]) will be
necessary for the tightening up of the property.

In the first section I give a short resumé of the theory we

need throughout this paper. The second section contains the
disjunction property and the existence property, formulated
according to Prawitz. Here it is explained why this last property
needs a reconsideration. It will appear to be necessary to use an
algorithm which computes a most simple term. This is the
unification algorithm which is important in resolution.

Section three deals with this algorithm.

In section four the final theorem is presented and proved, the
existence property for IQC with function symbols.

The conclusion of this paper follows in section five.

o

For the proof of the existence property we need a few
definitions and theorems. I will give a short summary of the
results which Prawitz proved before arriving at this property.

I do advise the reader to take notice of these theorems in
Prawitz [4].

We only consider normal derivations, for this purpose I define
the following.

Definition. In a derivation a gsegment is a sequence
¢1,...,0n of isomorfic formula occurences, such that:
(1) ¢1 is not the conclusion of a v-E or 3-E, and
(ii) ¢3i (i<n) is the minor premiss of v-E or 3-E, and
(iii) ¢p is not the minor premiss of v-E or 3-E.

Definition. In a pormal derivation in IQC all the segments,which

are the conclusion of an introduction rule and the major
premiss of an elimination rule, are eliminated.

The normalisation theorem.

Every derivation D in IQC can be transformed in a normal
derivation D' in IQC.

We also use a theorem which gives us information about the
structure of normal proofs. Two more definitions are needed.

Definition. In a derivation a path is a sequence of formula

occurences ¢1,...,9n , such that:

(1) ¢1 is a hypothesis which is not cancelled by a v-E or
3J-E, and

(ii) ¢i (i<n) 1is not a minor premiss of —-E, and either:

a)¢i is not a major premiss of v-E or 3-E and ¢i+1
immediately below ¢3i, or

b)¢i is a major premiss of v-E or —-E and ¢i+1 1is
cancelled at that application,

and

(iii) ¢p is either:
a)a minor premiss of —--E, or
b)the conclusion of the derivation, or

c)a major premiss of v-E or 3-E when nothing is
cancelled.

The definition of a strictly positive (sp) subformula is

inductively given by the following clauses:

(1) ¢ is a sp subformula of ¢ ;

(ii) 4if ¢1 v ¢2 is a sp subformula of ¢, then ¢1 and ¢2 are
sp subformula of ¢ ;

(iii) if ¢1 A ¢2 is a sp subformula of ¢, then ¢1 and ¢2 are sp
subformula of ¢ ;

(iv) 1if Ox¢1 (x%) (0=3,V) is a sp subformula of ¢,then ¢1(t)
is a sp subformula of ¢ ;

(v) if ¢1-¢2 is a sp subformula of ¢, then ¢2 is a sp
subformula of ¢.

sl

1

Theorem.
Let D be a normal derivation in IQC and ® = si,...,sp a path
of segments in D. There is a minimum segment si; which divides

T in an introduction part and an elimination part,
furthermore:

(1) every formula in a segment in the 3-part of © is a
strictly positive subformula of s7 (ie. a hypothesis),
and

(ii) the formula in the minimum segment of M is a strictly
positive subformula of sq and, if not 1, then a strictly

positive subformula of sp, and

(iii) every formula in a segment in the I-part of T is a
strictly positive subformula of sp.

The last definition in this section concerns terms, because

they are of major importance throughout this paper. The

definition is according to Prawitz.

Definition. t is a term if and only if

(1) t is a parameter or a constant (not a variable), or

(ii) t = f£(tq,...,tn), where tq,...,tp are terms and f is
an n-place function symbol.

Th isdunction an xi n L =

First I give a short description of the disjunction property
and its proof. Actually only the part we need in the proof of
the existence property. Second I quote the existence property
from Prawitz, and try to make clear which problems appear
when we observe this property in IQC with function symbols.

The disjunction property (DP) .
When no formula in T has a strictly positive subformula with
v as principle sign and T+¢vy, then I'¢ or I'ry.

The most important feature in the proof of this theorem is
the fact that there can be only one endsegment (ie. a segment
which contains the endformula ¢vy). Otherwise theorem 1.1.6
tells us that v is a principle sign in T.

example .
Suppose there are two endsegments, these endsegments have to
go through a v-E:

[¢] (y]
D' Dq Do
ovy a0} 1)) v—-E
2 __

The path along ¢vy with topformula T does not go through a
—-E. So 1 is not cancelled and according to theorem 1.1.6
ovy 1is a strictly positive subformula of I', this contradicts
the assumption.

The interested reader should consult Prawitz for the details
of the proof.

iy The following theorem holds for a language without function

symbols.
The existence property (EP) .
"Let ty,....,tn (n20) be all the terms that occur in 3xA for

some formula of I' and let there be no formula of I that has a
strictly positive subformula containing 3 as principle sign.
We then have:

(i) For n>0 : If T+3xA, then T+AXfqv..vAZ

(ii) For n>0 and provided that no formula of I has a strictly
positive subformula that contains v as principle sign
If T+3xA , then I'-A¥.; , for some is<n

(iii) For n=0 : If TI+3IxA, then T'+VxA ."

This property can be proved, rather easily, by means of Kripke
semantics 1), or in categorical logic 2). We want a
constructive proof in the Gentzen system. The requested term t
in the theorem (ii) really is computed.

The difference with Prawitz' EP is that we allow function
symbols.

The next example shows that a more precise formulation

of the theorem is needed in that case.

example .

Yxo(x) Yyw(£(y))
o(ff(a)) y(ff(a))
o(ff(a)) Aw(ff(a))
Ix(6(x) Aw(x))

There are no terms in I, so according to Prawitz' EP we should
conclude T'-Vz (¢(z) A y(z)). This is not the case, for it would
imply Vz(y(z)).

In this example we could have chosen a more simple term in the
V-E, which is f(a). For the computation of the most simple
term we need a so called unification algorithm. This concept
will be defined in the next section.

1) D.v.Dalen. Logicandstructure . Springer Verlag, Berlin, (second

edition) 1983.
2) J.Lambek, P.J.Scott. Introduction to higher order categorical logic . Cambridge

university press, Cambridge 1986.

2

o

.3 s

The origin of the induced term

Terms can have their origin in formulas in G, but in a
derivation new terms can be introduced, as in the example
above. For the introduction of new terms we have to consider
the following cases:

(1) [6(t)] (id) D (iid) D
D ——YV y-I K
S || S yvo(t) o(t)
o (t) -y
(iv) D
Yx6(x) v-g
¢ (t)

In a derivation D we can have an A-I as last application:

D1 D2
o(f(a)) v(b) -1
¢(f(a)) A y(b))

Suppose we want a proof of 3x(¢(x) A y(x)) (eg. example).
In that case f(a) and b have to be unified (if possible) at
their introduction.

The derivation D is converted to:

D1 Dp'
o (f(a)) y(f(a)) -7
o(f(a)) aw(f(a)) 371
3Ix(9(x) A y(x))

We call f(a) the original term of ¢, and b the original term
of vy, and the place in the derivation tree where the original
term t is introduced the gorigin of t.

Furthermore we define:

Definition. Given a derivation D
() 371,
Ix¢ (x)
we call t the induced term (i-term) of this inference.

We create a recursive algorithm SEARCH to find all the origins
of an i-term in a derivation tree D. The input of the
algorithm consists of an i-term t, a derivation D and an empty
list U. The output is the list U which contains all the
origins of t in D. In the appendix I include a program of this
algorithm written in PROLOG to illustrate the procedure
SEARCH.

The procedure SEARCH is defined by recursion in the last
application of the derivation D (D may be empty, i.e. we
arrived at a hypothesis). SEARCH has three arguments, the
derivation tree D, the i-term t and the list U of origins
which have to be found (at the initial call U is the empty
list). I describe SEARCH in a procedural, PASCAL-like,language.

procedure SEARCH (var D : tree ; var t, t' : term ;
var U : list) ;

begin case
:push t' on U ,
v(t) /* t' is the original term of ¢, or */
/* of y when t not in ¢. * /
D
A-E oA w(t) :search (D, t, U),
y(t)
(6] [t]
D1 D2 D3
v-E _ove wit) w(t) :(search (D3, t, U) ;
y(t) search (Dy, t, U)
if t in ¢ or
then search (D7, t, U)
)y
Di D2
—=E S4ow(t) ¢ :(search (D1, t, U) ;
y(t) if t in ¢
then search (Dp, t, U)
)
D
V-E _Vxy(x) :(push t' on U ;
y(t) /* £' is the original term of y */
if t in Vxy(x)
then search (D, t, U)
)
D
3-E vy (t,y) tsearch (D, t, U),
y(t,s)
D
L1 . :push t' on U
y(t) /* t' is the original term of y */,
[¢]
D
--I y :(search (D, t, U) ;
ooV if t in ¢
then push t' on U
/* t' is the original term of ¢*/
),
Dq Do
A-1 v (t) o : (search (D1, t, U) ;
y(t) A ¢ if t in ¢

then search (D2, t, U)
),

« .

D

v-1 [0) t(push t' on U ;
o v y(t) /* t' is the original term of y */
if t in ¢
then search (D, t, U)),
D
V-1 y(t ,a) :search (D, t, U),
Vxy(t, x)
D
3-1I y(t,s) :search (D, t, U),
Ixy (L, x)

out push t on U
end search.

According to the structure of the derivation, U always
precisely contains the origins of the i-term.

Whenever one of the terms in U occurs in a hypothesis, we say
that the origin of the i-term is in T.

For the computation of the most simple term t for which T
proofs ¢(t) in the EP, the terms in U have to be unified. The
unification algorithm produces the most general unifier of
the terms in U, and this most general unifier determines the
most simple term t.

h 1fd ion ithm

We represent terms as trees.

(1) When t is a parameter or a constant, then t has no
descendants;

(iiy When t = £ftq,....tpn)ls with t4,....tn terms, then £ is
a node with n descendants (ie. outdegree n), one for each
ty (1 £ 1 < n).

We use the following notation for tree t:

(i) t(e) is the node in tree t with adress e, which is the
root.

(ii) Let u be a sequence of numbers (ie. an adress in t),
then {t(ui) : ieN} are the nodes direct under t (u), and

t(uj) is immediately to the left of t(u(j+l)).
(iii) t/u is the subtree of t rooted at u.

example. Term s = f(a,g(a,c),b) is represented as tree t:
£
////r\\\ t(e) = £ and
a g b t(l) = a, t(2) = g, t(3) = b/
//\\ t(2 1) = a, t(2 2) = ¢ and
a c t/2 = g
é/*\k
definitions .
1) The complexity of a term t with tree T(t) is the depth of
T(t).

2) Term t with tree T(t) is simpler than term s with tree
T(s), when depth(T(t)) < depth(T(s)).

.1

L

3) (1) A substitution is a function o.

Notation: o(t) = t(s/a), ¢ is the substitution that
substitutes term s for a in term t.

ii) Composition of substitutions is defined a-
c.mposition of functions, o6°6 (t) = 6(6(t)).

(iii) o is a unifier of s and t when o(s) = o(t).
6 is a most general unifier of s and t, when o is a
unifier of s and t, and for every other unifier 6 of
s and t, there exists a substitution p such that
0 = pec. We say that u = 6(t) = o(s)is the most common
instance of t and s.

The unification algorithm computes, given two terms t1 and tp,
represented in trees, the most general unifier s of t; and ty,
if t7 and ty have a unifier at all.

[emma. The most common instance u of t and s has the minimal
complexity of all possible instances of t and s.

proof.

u = o(t) = o(s) where o is a most general unifier of t and s.
Suppose u' is another common instance of t and s, i.e. u' =
6(t) = O6(s), where 6is a unifier of t and s. There is a
substitution p, such that 6 = p o 6, which means that u' = p(u),

but then we have depth(u) < depth(u').
®

The list U that is produced by the algorithm search may
contain more than just two terms. The following lemma says
that unification of n terms can be reduced to unification of
two terms.

lemma. Let $ be a new function symbol of rank n. ¢ is a most

general unifier of $(ti,...,tpy) and S$(t3,...,t7) iff o is

a most general unifier of tq,ts,...,tn simultaneously.

proof .

6 is a homomorfism, so o($(ty,...,tpn)) = S(o(t1),...,0(tp))
and o(S(t1,...eE1)) = S{o(L1) . cp0lty)).

Hence o($(t1,...,tn)) = 0'($(t1,...,t1)) iff city) = olty).
o(ty1) = o6(t2),...,0(t1) = o(tp) or equivalently o(tq) =
Glkg) = v.. = O(Eg)s

==

When o is a most general unifier of $(ti,...,tp) and
S({tyssvsrt1), © 18 a unifier of ti,to,essertpy.

Let 8 be an arbitrary unifier of £y ,....rtpn »

then 6 is a unifier of $(t1,....,tp) and S(tq,....,t1), so
there exists a substitution p with 6 = poo. We conclude that o
is a most general unifier of tq,to,....,tp.

= This is proved similarly.

The algorithm is mainly inspired by Gallier [2]. The
unification procedure computes whether two terms are unifiable,
and if they are unifiable, it computes their most general
unifier.
The input consists of two rectified trees (ie. the trees are
not allowed to contain identical parameters), which represent

9

not allowed to contain identical parameters), which represen:
the terms.The algorithm compairs them by means of a depth-first
tree traversal, and determines where the two trees disagree.

In our case we know that the two trees are unifiable and we are
only trying to find the most common instance of the original
terms. This puts us in a rather comfortable position, as there
can not be aon-repairable (fatal) disagreements (this would
imply that the terms aren't unifiable). The only thing we have
to do when we discover a disagreement is repairing it.

The output of the unification procedure is the most common
instance of the two trees, and the most general unifier.

We first define a few functions:

3.2.1 definition.
leaf(u) = true iff u is a leaf (has no descendants);
parameter (u) = true 1iff t(u) is a parameter ;
left (u) = if leaf(u) then nil else u 1l ;
right (u) = if u(i+l) adress in t then wu(i+l)
else nil
Now we are able to formulate the algorithm.

(The appendix also includes a PROLOG-program of a unification
procedure.)

3.3 procedure wunification (war ti1, t2: tree ;
var mgu : substitution);

procedure unify (yvar node : treereference ;
var mgu : substitution);

var newnode : treereference;
var o : substitution;
begin if tj(node)<>tjs(node) then case
parameter (tj(node))

(6 := (tp/(node))/(t1(node)) ; mgu :=06 omgu;
£ty = olty) ; ty 1= olt2)),

parameter (to(node))

(6 := (t1/(node))/(tp(node)) ; mgu :=comgu;
tq = o(ty) ¢ tz = o(t2)),
endif
if left(node)<>nil then newnode := left (node) ;
while newnode<>nil do
unify (newnode,unifier) ;
newnode := right (newnode)
endwhile
endif
end unify ;

/* main program */

begin mgu := nil ;
node := e ;
unify (node,mgu)
end unification.

10

example. t1= f(a,g(a,c),b) and ty= f(h(c),g(h(b),c),d)

tg: G 5 £

N N

/A A

e}
I

b

c

The first disagreement is found at node 1.
parameter (tq(l)), so o := h(c)/a and mgu := h(c)/a,

/Z\ N
\ A

c
b

The second disagreement is found at node 211.

parameter (tj(211)), so o := b/c and mgu := b/c ° h(c)/a,
tq: \ Eai h g d
b h b h
| |
b b

The last disagreement at node 3 follows.
parameter (t1(3)), so o := d/b and mgu

]

d/b o b/c o h(c)/a ,

finally we have:

PN I\

R A AN

d d

We also need the crucial theorem, which is proved in Gallier
[2] p.390

Theorem. When there is a unifier of two terms, then there exists

a most general unifier of these terms, produced by the
algorithm.

11

.4

The next question is:

Is it possible to give a maximum of the complexity of the most
common instance of the list U ?

Suppose we arrive during the procedure UNIFY at node u, and
t1(u) is a parameter a, so o:= ((tp/u)/a) (when tq(u)<>ty(u)).

Let depth(ty) = m; and depth(ty) = my at that moment. We
distinguish two cases:

1) a does not occur somewhere in tq or ts
depth(o(tq)/u) = depth(c(tp)/u), hence
max (depth(tj) ,depth(ty)) = max(depth(c(ty)),depth(a(ts))).

2) a does occur somewhere else in t; or tj
depth(ty/u) <€ max(depth(t;),depth(ty)), hence
max (depth(o(ty)),depth(c(tp))) < 2xmax(depth(ty),depth(ty)).

Furthermore, we know that after every substitution during the
unification algorithm the number of distinct parameters

- decreases with one.

These results give rise to the next lemma on the maximal
complexity of the most common instance of two given terms.

Lemma. Given the most common instance t of two terms tj and ta.

Let n be the number of distinct parameters in t] and tj:

(1) If no parameter in tj] or tjp occurs more than once, then
depth(t) < max(depth(ti),depth(typ)).

(ii) If there are parameters in t; or ts, which occur twice or
more, then depth(t) < 2P~1l. max(depth(tj),depth(ts)).

proof .

(1) From the preceding results we know that after every
substitution, the complexity of the resulting term is

smaller than or equal to the maximal complexity of the
former terms.

(ii1) At most n parameters occur more than once. We have at most
n-1 substitutions which can double the maximal complexity.

®

But the implementation we choose in lemma 3.1.3 for unifying n
terms leads to a crude maximum of the complexity.

(When n>2, there will always occur a parameter twice or more
in the tree $(t7,....,t71).)

An implementation which doesn't suffer from this disadvantage
is illustrated by the following example:

Example. Suppose four rectified (this is important for the

implementation !) terms have to be unified. We compute:
(i) The most general unifier o1 of t; and tp;

(ii) The most general unifier 62 of t3 and ty;
(iii) The most general unifier o3 of o1(t1) and o2 (t3).

12

Claim. o3°c2°0] is a most general unifier of tj,to,t3 and tg4.
The proof is in two steps:

1) o3°02°0] is a unifier of tq,tp,t3 and tg4.

- 063202001 (t71) 63° 02°01(t2) .

- 03°62°01(t1) = o3°01(t]) = 03°02(t3) = 03°62001(t3).
- o03°02001(t1) = 03°02(t3) = o03°062(tyg) = 63°62°01(ty).
2) c3°02°0] is a most general unifier of tj,tp,t3 and tg.

If 6 is a unifier of tj,tp,t3 and tyg, then:

a) 6 is a unifier of t; and tp : 6 = prooy,

b) 6 is a unifier of t3 and tgq : 6 = p2eoy,

c) 6(o1(t1)) = preo1(oc1(ty)) = p1(o1(ty)) = B(ty) = 6(t3) =
p2 (62 (t3)) = p2°c2(02(t3)) = 6(02(t3)). Hence 6 is a
unifier of 61(t1) and o62(t3): 6 = p3co03.

Let p = p1°p2°p3, wWe have pog3c02°0] =
P1° P2° P3 ©G3°G2° 01 = P1° P2° 6°G2°G] = P1°P2°P2°02° G2 G =
p1°p2°02° 01 = p1°Boo] =...= 6.

Conclusion: Given a substitution 6, which is a unifier of
t1,t2,t3 and ty, there exists a substitution p such that

6 = poo3eo2°c], and 03°02°0] is a most general unifier of tq,ty,
t3 and tg.

®

Different most general unifiers can, by definition, only be
alphabetic variants of each other. Hence, the resulting most
common instances do have the same complexity.

The lemma on the maximal complexity for the most common
instance of n terms becomes:

3.4.2 Lemma. Given n terms ti,....,tp with most common instance t.
Let k be the number of distinct parameters in tq,,....,tp
(i) If no parameter occurs twice a in term, then
depth (t) < max(depth(ty),....,depth(tp)).
(ii) If a parameter occurs twice or more, then
depth(t) < 2K, max (depth(tq) ;. ..,depthity)).

13

The final theorem.

The two special tools introduced for our existence property
are the procedures SEARCH and UNIFICATION. They are crucial
for the formulation and proof of the theorem.

[emma: When I'+3x¢(x) and no formula in I has a strictly

positive subformula containing 3 as principal sign, then every
endsegment ¢ is the conclusion of a 3-I or 1i.

proof: Let y = 3x¢(x). The proof consists of three steps.

(i) o contains no minor premiss of 3-E.
Suppose we have the derivation with endformula wy:

[Vv(u)]
Dy D2

dyv (y) VY _ 3-E

The path through 3yv(y) with topformula 7 contains no —-I
(by definition). So 7 is not cancelled and so is (1.1.5) 3
the principal sign of a strict positive subformula in T.
Contradiction with the assumptions on T.

(ii) o is not the consequence of an elimination rule. When o

was the consequence of an elimination rule, o had to be
the minimum segment of the paths where it belongs to. The
topformulae of these paths belong to I' and have 3Ix¢(x) as
strictly positive subformula. Again a contradiction on the
assumptions on T.

(iii)o is the conclusion of a 3-I or 1j.

6 has to bo the conclusion of an introduction rule, or 1.

®

The derivation of 3x¢(x) from I' has the following form. We have
the conclusion 3Ix¢(x) and possibly more endsegments o, because
there can be v-eliminations in o (2.1). Every endsegment is the
conclusion of an 3-I or lj. The induced term at that 3-I is

called the i-term of that endsegment.

14

4.2 EP: Let I'+~3x¢(x) and let tq,...,tp be all the terms in T.

Assume that no formula in I' has a strictly positive subformula
containing 3 as principle sign. Then

(i) If there are g endsegments, then T +¢(s7) v...v¢(sq), where

terms sj,...,Sq are obtained by the unification process
from tq,...,ty and terms which are introduced in the
derivation. We can compute a maximal complexity for the
terms sj,...,Sq-

(11)If T has no formula with a strictly positive subformula
containing v as principle sign, then T+¢(s), where s is
obtained by unification from tq,...,tp and terms in the
derivation. We can give a maximal complexity of s. (If s
only is obtained from terms introduced in the derivation we
can conclude T~Vxé(s(x)).)

proof:

(1) Let o1 be an endsegment (for example the most left one in
the derivation). From lemma 4.1 we conclude that o1 is the
conclusion of an 3-1 or li. When the premiss of that
application is ¢X,; we determine with the procedure SEARCH
the origin of u. If u doesn't have its origin in T, we
compute the most common instance sq of list U (produced by

SEARCH) with the procedure UNIFICATION. We repeat this fox
every endsegment in the derivation. Next we convert the
derivation into a derivation of I'+¢(s3) v...vé(sq). Every

endsegment in the original derivation was a conclusion of
3-I or 1i. In case of 3-I we delete this 3-I and insert g
v-introductions with conclusion ¢(sjy) v...vé(sq).

In case of Li we don't conclude 3x¢(x), but directly
¢(sl)v...v¢(sq). At this moment every endsegment oi' is

the conclusion of the last v-I or 14 and the endsegments oi'

have 3x¢(x) substituted by this disjunction. We obtain the
required proof. The maximal complexity of sj,...,sg follows

from 3.4.1

(1i)This is an immediate conclusion from the remark in 2.1 at
the disjunctive property and (i) above.
If the term s does not occur in any hypothesis on which this
endformula depends (n=0), we can apply a V-introduction and
obtain the desired proof.

®

15

The main difference between the existence property we have
formulated and the EP from Prawitz (4] is that we have to
examine the derivation. We must discover the origin of the
i-term, Dbecause terms which are introduced during the
derivation can contain function symbols and are not Jjust
parameters. The presence of function symbols gives rise to a
unification procedure. It is this procedure which made it
possible to handle the function symbols in a proper way, though
it has become quite a complicated way to come to the essential
conclusions of the theorem.

Our result is a complete and constructive proof of the EP for
intuitionistic logic with function symbols. We really compute
the required term(s) and can therefore determine a boundary of
its complexity.

(However, in my opinion there is some future work in making this
boundary smaller.)

16

[1] D. v. Dalen. Logicandstructure. Springer Verlag, Berlin,
second edition 1983.

(2] J.H. Gallier. Logicforcomputerscience: Foundations of automated theorem
proving. Harper & Row, 1986.

[3] S.G. v/d Meulen. XKunstmatigeintelligentic. Unpublished, 1987.

(4] D. Prawitz. Naturaldeduction, a proof theoretical study. Almgvist &
Wiksell, Stockholm 1965.

17

hulp.pas Fri Feb 12 15:48:20 1988 1

/* APPENDIX

/* This program searches for original terms in a proof, and unifies them.

/* It uses a predicate ‘modify’, which translates the input in a list.
/* This list is searched by the predicate ‘search’, ’‘search’ computes a
/* list U of original terms. U is unified by the predicate ‘unificate’.

/* These operators make it easier to define input.

:- op(600,xfx, &) .
:- op(600,xfx,v).
:— op(600,xfx,->).
:— op(550,fy,~).

/* The procedure modify has two arguments.

/* The first argument contains the input specification.

/* The second argument specifies the output for that application, when
/* the condition is satisfied.

modify(and intro(A,B,C) , [Al,B1,Cl]) :- modify(A,Al),
modify(B,Bl),
modify(C,Cl1l).
modify(or intro(A,B) , [Al,Bl)]) :- modify(A,Al),
modify (B,Bl) .
modify (imp intro(A,B) , [(Al,Bl]) :- modify(a,Al),
modify (B,B1).
modify(for all intro(A,B) , [Al,Bl]) :- modify(A,Al),
modify(B,B1l) .
modify(there_is_intro(A,B) , [(Al,Bl]) :- modify(A,Al),
modify(B,Bl) .
modify(falsum(A, falsur,B) , [Al, [falsum|B1l]]) :~ modify(A,Al),

modify(B,Bl1) .

modify(and el(A,B) , [(Al,Bl]) :- modify(A,Al),
modify (B,Bl).

modify(or_el(a,B,C,D) , [Al,B1,C1,D1]) :-
modify (A, Al),
modify(B,Bl),
modify(C,Cl),
modify(D,D1).

. modify(imp_el(A,B,C) , (Al,B1l,Cl]) :- modify(A,Al),
} modify(B,B1),

modify(C,Cl)".
modify(for_all el(A,B) , [Al,Bl]) :- modify(A,Al),
modify(B,B1) .
modify(Aa & B , {and,al,Bl]) :- modify(A,Al),
modify(B,Bl).
modify(A v B , [or,Al,Bl]) :- modify(A,Al),
modify(B,Bl) .
modify(A -> B , [imp,Al,Bl]) :- modify(A,Al), 18

modify (B, Bl) .

LY

*/
*/
ot |
4

*f

hulp.pas Fri Feb 12 15:48:20 1988 2

modify(~A , Al) :- modify(A,6Al).
modify(for_all(X,B) , [for_all,Bl]) :- modify(B,Bl).
modify(there_is(X,B) , [there is,Bl]) :- modify(B,Bl).

modify (A,A).

/* The procedure search computes the list U of original terms, given
/* the modified list of the proof and the i-term.

search([A | []1 1, T , ([Ot]) :-
flatten([A],B),
member (T, B),
original (Ot,A).

search([A | (1 I}, T, (1).

search([&2 , [[and,A,B]|L]]}, T, U) :-
search(A , T , U).

search ([A , [[orlBIC]'LI]I[AILzll[A'L3] 1, T, U} :=:-
search([[or,B,C]|L1], T , Ul),
search([AIL2], T , U2),
search([AIL3], T , U3),
append(U1,U2,V),
append(U3,V ,U).

search({ & , [[imp,B,A]|L1l),[BIL2]], T , U) :-
search([[imp,B,A](L1], T , Ul),
search([BiL2], T , U2),
append (U1,U02,U).

search({ A , ([(for_all(BlIL}] 1, T , U) :-
flatten(B,C),
member (T,C),
search([[(for_all|B]|L], T , U).

search([A, ([for_all|B])IL] 1, T , [(Ot]) :-
original (Ot,A).

search([A , [((there_is(B](L]], T , U) :-
search([[there_is|B]|L], T , U).

search([A , [falsum|L]]}, T , [Ot]) :-
original (Ot,A).

search([A , [falsum|L] 1, T, U :—=
.search(L , T, U).

search({ (imp,A,B] , [BIL}] 1, T , U) :-
search([BIL], T , U).

search([[(and,A,B} , [A|L1l] , [BIL2]], T , U) :-
search([A|L1)}, T , Ul),
search([B|L2], T , U2),

append (U1,U02,U) .

search([[or,A,B} , [AIL]], T , [OtlU]}) :-
flatten(B,C),
member (T, C),
original (Ot,B),
search([A|L }J, T , U).

hulp.pas : Fri Feb 12 15:48:20 1988 : 3
search([(for_alliB} , [(AlL}], T , U) :-
search([A|L], T , U).

search([(there_is|B] , [AIL] 1, T , U) :-
search([AIL], T , U).

/* ‘Flatten’ flattens a formula, ie. creates a list of all the symbols, */
/* which occur in the formula, in order to decide whether T is a ‘member’ */
/* of the formula. */

flatten((],(]).

flatten([X|Xs],Ys) :- flatten(X,Y¥Ysl),
flatten(Xs,Ys2),

" append(Ysl,Ys2,Ys).
flatten (X, [X]).
/* The procedure unificate unifies the list U. */
/* The procedure unify unifies two terms. When a disagreement is found */
/* during the searching through the ‘term tree’, we have to make a */
/* substitution in the terms. These terms are the third and fourth *x/
/* argument of the predicate. The results after the substitutions at a LY/
/* disagreement are put in the fifth and sixth argument of ‘unify’. */
/* The first two arguments contain the current node of the trees, and */
/* specify the substitution when a disagreement is found. x/
unificate([U1l,(]],Ul).
unificate([Ul(([U2[[]]],X) :- unify(Ul,U2,U1,U2,X,Y).
unificate([U1|L]),Y) :- unify(U1l,X,U1,X,SX,Y),

unificate (L, X).

unify(X,Y,Xor,Yor,SX,SY) :- atom(X),
substitute (X, Y, Xor, SX),
substitute (X, Y, Yor,SY).

unify (X, Y, Xor,Yor,SX,SY) :- atom(Y),
substitute (Y, X, Xor, SX),
substitute (Y, X, Yor,SY) .

unify(X,Y,Xor,Yor,SX,SY) :- functor(X,F,N),
functor(Y,F,N),
unify args(N,X,Y,Xor,Yor, SX, SY) .

unify args(N,X,Y,Xor,Yor,SSX,SSY) :- N > 0,

- ’ unify_arg(N,X, Y, Xor, Yor, SX, sy) .
M is N-1,.)
unify. args (M, X, Y, SX, SY, SSX, SSY)

unify args(0,X,Y,Xor, Yor,Xor,Yor).

unify arg(N,X,Y,Xor,Yor,SX,SY) :- arg(N,X,Xn),
arg(N,Y,¥Yn),
unify(Xn,¥Yn, Xor, Yor, SX, SY) .

/* ‘Substitute’ replaces all the occurences of the first argument for */
/* the second argument in the third argument. The resulting term is */
/* the fourth argument of this procedure. */

: : 20
substitute(X,Y,X,Y).

hulp.pas Fri Feb 12 15:48:20 1988 4
substitute (X, Y, Xor,Xor) :- atom(Xor). .

substitute (X, Y,Xor,SX) :- functor(Xor,F,N),
functor(sx ,F,N),
substitute(N,X, Y, Xor, SX) .

substitute(N, X, Y, Xor,SX):- N > 0,
arg(N,Xor,Xor_n),
substitute(X,Y,Xor_n,SX n),
arg(N,SX,SX n),
M is N-1,
substitute (M, X, Y, Xor, SX) .

substitute(0,X,Y,Xor,SX).

/* "Solve’ is first called by the user, with in the first argument the
/* proof and in the second argument the i-term t.

/* The proof is written:

/* <application_rﬁle>(<conclusion>,<premiss_}>,...,<premiss_i>),

/* where 1 = 1,2,3.

/* A premiss can be a proof itself, or a hypothesis, or a formula which */

/* is introduced at that application.

/* Formulas which are a hypothesis, or introduced at an application

/* are already written as a list: [<operator>,<operand 1>,<operand 2>]
/* of course the negation sign has only one operand.

/* An atom a(t) becomes [a,t].

solve (X, T,Mgu) :- modify(X,Y),
search(Y,T,U),
unificate (U,Mgu) .

/* Three examples are included in this appendix

o */

o

21

I asserted the following facts to the data-base:

proof2 (imp_intro(([a,t] & [b,t]) -> ~([a,t] ->[b,t]), falsum(~([a,t]
-> [b,t])),falsum,and intro([b,t] =« [~b,t],imp el ([b,t], [(imp, [a,t]
, [b,t]]]land_el([a“ltll ((and, (a,t], [(~b,t] 11)) ,and_el([~b,t] ’ [[and,
[~blt]I[alt]]])))))'

proof3 (and intro([a,f(f(t))] & [b,f(£f(t))],for_all el((a,f(£(t))],
for_all(x,a),for_all_el([b,f(f(t))],for all(x,b)))).

original(t, [imp, [a,t], [b,t]]).
original(u, [and, [~b,t], [a,t]]).
original (s, [and, [a,t], [~b,t]1]).
original (f(t),[a,£(£f(t))]).
original(s, [b,f(f(t))]).

The questions were:

7= prOon(PZ),modify(PZ,X),search(X,t,U),unificate(U,Mgu-u).
?- proof3(P3),modify(P3,¥),search(Y,f(f(t)),V),unificate(V,Mgu-v).
?- unificate([f(g(s,t),s,t) , £(u,h(k),h(k)) 1 , Mgu) .

Printed are: X, U, Mgu-u,
Y, V, Mgu-v,

Mgu.
output Wed Feb 24 15:48:46 1988 1
X = [[impr [andv [al t] ¢ [~blt]]I [impl [alt] ¢ [blt]]]I [[i-mp: [alt]l [b't]]r [falsumr

{and, [b,tl., [~blt]]l [[blt]I [[impr (a,t]], [blt]]]l {(art], ([and, (a,t], (~b,t]]]1]]
[(~b,t], [[and, [~b,t], (a,t]]1111].

U = [t,s,u]

Mgu-u = ¢

Y = [{and, [a,£(£(£))], (b, £(£(t)) 1], [[a,£(£(t))], ([for_all,alll, [(b,£(E(L))],
[(for_all,bl]l]. .

vV = [f(t),s]

Mgu-v = f(t)

Mgu = f£(g(h(k)),h(k),h(k))

22

Logic Group Preprint Series
Department of Philosophy
University of Utrecht
Heidelberglaan 2

3584 CS Utrecht

The Netherlands

nr.

nr.
nr.

nr.

nr.

nr.

nr.
nr.

nr.

nr.
nr.

nr.
nr.

nr.

nr.

nr.
nr.
nr.
nr.
nr.
nr.

nr.

nr.

nr.

nr.

nr.
nr.

1

2
3

00 N

10
11

12
13

14

15

16
17
18
19
20
21

22
23
24
25

26
27

C.P.J. Koymans, J.L.M. Vrancken, Extending Process Algebra with the empty pro-
cess, September 1985.

J.A. Bergstra, A process creation mechanism in Process Algebra, September 1985.
J.A. Bergstra, Put and get, primitives for synchronous unreliable message passing,
October 1985.

A.Visser, Evaluation, provably deductive equivalence in Heyting's arithmetic of
substitution instances of propositional formulas, November 1985.

G.R. Renardel de Lavalette, Interpolation in a fragment of intuitionistic propositional
logic, January 1986.

C.P.J. Koymans, J.C. Mulder, A modular approach to protocol verification using Pro-
cess Algebra , April 1986. ,

D. van Dalen, F.J. de Vries, Intuitionistic free abelian groups, April 1986.

F. Voorbraak, A simplification of the completeness proofs for Guaspari and Solovay's
R, May 1986.

H.B.M. Jonkers, C.P.J. Koymans & G.R. Renardel de Lavalette, A semantic
framework for the COLD-family of languages, May 1986.

G.R. Renardel de Lavalette, Strictheidsanalyse, May 1986.

A. Visser, Kunnen wij elke machine verslaan? Beschouwingen rondom Lucas’ argu-
ment, July 1986.

E.C.W. Krabbe, Naess's dichotomy of tenability and relevance, June 1986.

Hans van Ditmarsch, Abstractie in wiskunde, expertsystemen en argumentatie,
Augustus 1986

A.Visser, Peano's Smart Children, a provability logical study of systems with built-in
consistency , October 1986.

G.R.Renardel de Lavalette, Interpolation in natural fragments of intuitionistic
propositional logic, October 1986.

J.A. Bergstra, Module Algebra for relational specifications, November 1986.

F.P.J.M. Voorbraak, Tensed Intuitionistic Logic, January 1987.

J.A. Bergstra, J. Tiuryn, Process Algebra semantics for queues, January 1987.

F.J. de Vries, A functional program for the fast Fourier transform, March 1987.

A. Visser, A course in bimodal provability logic, May 1987.

F.P.J.M. Voorbraak, The logic of actual obligation, an alternative approach to deontic
logic, May 1987.

E.C.W. Krabbe, Creative reasoning in formal discussion, June 1987.

F.J. de Vries, A functional program for Gaussian elimination, September 1987.

G.R. Renardel de Lavalette, Interpolation in fragments of intuitionistic propositional logic,
October 1987.(revised version of no. 15)

F.J. de Vries, Applications of constructive logic to sheaf constructions in toposes, October
1987.

F.P.J.M. Voorbraak, Redeneren met onzekerheid in expertsystemen, November 1987.
P.H. Rodenburg, D.J. Hoekzema, Specification of the fast Fourier transform algorithm as a
term rewriting system, December 1987.

nr.

nr.

nr.

nr.

nr.

nr.
nr.

nr.
nr.

nr.

nr.

nr.
nr.

28

29
30

31
32
33

34
35

36
37

38

39

40
41

D. van Dalen, The war of the frogs and the mice, or the crisis of the Mathematische
Annalen, December 1987.
A. Visser, Preliminary Notes on Interpretability Logic, January 1988.
D.J. Hoekzema, P.H. Rodenburg, Gauf elimination as a term rewriting system, January
1988.
C. Smorynski, Hilbert's Programme, January 1988.
G.R. Renardel de Lavalette, Modularisation, Parameterisation, Interpolation, January 1988.
G.R. Renardel de Lavalette, Strictness analysis for POLYREC, a language with
polymorphic and recursive types, March 1988.
A. Visser, A Descending Hierarchy of Reflection Principles, April 1988.
F.P.J.M. Voorbraak, A computationally efficient approximation of Dempster-Shafer theory,
April 1988.
C. Smorynski, Arithmetic Analogues of McAloon’s Unique Rosser Sentences, April 1988.
P.H. Rodenburg, F.J. van der Linden, Manufacturing a cartesian closed category with
exactly two objects, May 1988.
P.H. Rodenburg, J. L.M.Vrancken, Parallel object-oriented term rewriting : The Booleans,
July 1988.
D. de Jongh, L. Hendriks, G.R. Renardel de Lavalette, Computations in fragments of
intuitionistic propositional logic, July 1988.
A. Visser, Interpretability Logic, September 1988.
M. Doorman, The existence property in the presence of function symbols, October 1988.

