
Process Improvement through
Software Operation Knowledge

If the SOK Fits, Wear It!

Henk van der Schuur

SIKS Dissertation Series No. 2011-43
The research reported in this dissertation has been carried out under the auspices
of SIKS, the Dutch Research School for Information and Knowledge Systems.

ISBN 978-90-393-5668-5

© 2011, Henk van der Schuur. All rights reserved

Cover design: COUP

Process Improvement through
Software Operation Knowledge

If the SOK Fits, Wear It!

Procesverbetering door middel van
softwarefunctioneringskennis

Wie de SOK past, trekke hem aan!
(met een samenvatting in het Nederlands)

Proefschrift
ter verkrijging vande graadvandoctor aandeUniversiteit Utrecht op gezag van
de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het
college voor promoties in het openbaar te verdedigen op 17 november 2011 des
namiddags te 12.45 uur

door

Hendrik William van der Schuur
geboren op 29 maart 1986, te Amersfoort

Promotor: Prof. dr. S. Brinkkemper

Co-promotor: Dr. S. Jansen

This research was financially supported by Stabiplan B.V., the Netherlands and
AFAS ERP Software B.V., the Netherlands.

Preface

This dissertation is all about the fascinating topic of in-the-field software op-
eration. During my master’s thesis research in 2008, I became interested in
the relationship between software vendors and their customers, particularly
their end-users: although most software vendors design, develop, test and de-
ploy their software with great care, somehow, end-users always are frustrated
by software nonetheless. Now it’s three years later, and this dissertation has
been finished. With the software operation knowledge research it is composed
of, software vendors are provided with methodical and tool support for im-
provement of their software processes through knowledge of the in-the-field
behavior of their software and end-users. Furthermore, this research may be
considered as an initial, explorative attempt to position the concept of in-the-
field software operation in the research domains of product software and pro-
cess improvement. This dissertation can be considered as an attempt to make
software-producing organizations aware of the software operation knowledge
concept, aswell as its value and potential with relation to process improvement.

During my PhD research, I have been accompanied and supported by many
people. First, I would like to thankmy co-promotor, Slinger Jansen (Roijackers),
for his enthusiasm and support throughout the past years. Slinger, thanks for
the numerous reviews of my work, and for being not easily convinced during
the many discussions we have had. Next, I would like to express my grati-
tude to Sjaak Brinkkemper, my promotor. Thank you Sjaak, for the multitude
of opportunities, suggestions, reviews, comments and advice you providedme
with — I certainly would not have been where I am now without your guid-
ance and support. I must also thank Gijs Willem Sloof and Bas van der Veldt,
for allowing me to perform my research, and for being inspirational and en-
couraging bosses. It is an honor and delight for me to have you two standing
beside me as paranymphs.

I would like to thank my colleagues, Inge, Jaap, Kevin, Willem, Marijn, Jo-
han, Rik, Ronald and others. Special thanks go to Jurriaan Hage, Andy Zaid-
man, Ronald Dähne and Ad van der Hoeven for their reviews and other valu-
able contributions to this dissertation. Furthermore, I would like to thank the
members of the reading committee, Paul Gruenbacher, Tom Mens, Willem-Jan
van den Heuvel, Marko van Eekelen and Arie van Deursen for taking the time
to read and judge this dissertation.

v

Of course, lots of thanks go to the friends and family that surrounded me
throughout the past years. Krijn, Rob, Sanjay, Niels, andMichiel — I am thank-
ful for the talks we had during lunch and coffee breaks, during walks and din-
ners, as well as for the advice and lessons I have learned from you guys. Grat-
itude goes to my parents, who have supported and encouraged me since ele-
mentary school: a big thank you for always being there for me all those years.
Finally, there is Sacha, my love and fiancée. Dear Sacha, your love and loyalty
are invaluable. I am looking forward to spending my life with you.

Henk van der Schuur
October 2011

vi

Contents

I Introduction 1

1 Introduction 3

1.1 Motivation . 3
1.2 Scientific Relevance . 4
1.3 Positioning the Research . 5
1.4 Research Approach . 10
1.5 Dissertation Outline . 16

II The Concept of Software Operation Knowledge 21

2 A Reference Framework for SOK Utilization 23

2.1 Introduction . 24
2.2 Software Operation Knowledge (SOK) 25
2.3 SOK Framework . 28
2.4 Empirical Evaluation . 33
2.5 Questionnaire Results . 35
2.6 Case Study Results . 37
2.7 Threats to Validity . 43
2.8 Conclusions and Future Work . 44

3 On the Role of SOK within Software Ecosystems 45

3.1 Introduction . 46
3.2 SOK Propagation within Software Ecosystems 47
3.3 Practice Identification Approach 53
3.4 Identified SOK Propagation Practices 55
3.5 Analysis of SOK Propagation Practices 65
3.6 Conclusions and Future Work . 66

vii

Contents

III Process Improvement through Software Operation
Knowledge 69

4 Reducing Maintenance Effort through SOK 71
4.1 Introduction . 72
4.2 Related Work . 73
4.3 SOK Acquisition and Presentation 74
4.4 Nuntia Tool . 77
4.5 Empirical Evaluation . 81
4.6 Threats to Validity . 92
4.7 Conclusions and Future Work . 93

5 Pragmatic Process Improvement through SOK 97
5.1 Introduction . 98
5.2 Related Work . 99
5.3 Research Approach . 100
5.4 SOK Integration . 102
5.5 Three Pragmatic In-the-field Method Instantiations 107
5.6 Conclusions and Future Work . 114

6 Leveraging SOK for Prioritization of Maintenance Tasks 117
6.1 Introduction . 118
6.2 Software Operation Summary . 119
6.3 Research Approach . 121
6.4 Maintenance Task Prioritization Survey 127
6.5 Analysis of Survey Results . 129
6.6 Sending Out an SOS: Case Study Results 136
6.7 Threats to Validity . 138
6.8 Related Work . 139
6.9 Conclusions and Future Work . 140

7 Becoming Responsive to Service Usage and Performance Changes 143
7.1 Introduction . 144
7.2 Service Knowledge Utilization . 145
7.3 SKU Report Indices . 149
7.4 Research Approach . 153
7.5 SKU Software Prototype . 155
7.6 Results . 159
7.7 Conclusions and Future Research 162

viii

Contents

IV Conclusion 165

8 Conclusion 167
8.1 Contributions and Evaluation . 167
8.2 Implications . 170
8.3 Reflection . 173
8.4 Limitations and Future Research 178

Bibliography 181

A Software Operation Knowledge Survey Questions 199

B Software Operation Knowledge Integration Interview Questions 203

C Software Operation Knowledge Propagation Interview Questions 207

List of Acronyms 211

Publication List 213

Summary 215

Nederlandse samenvatting 217

Curriculum Vitæ 219

SIKS PhD Theses 221

ix

If I have the gift of prophecy,
and know all mysteries

and all knowledge;
and if I have all faith,

so as to remove mountains,
but don’t have love,

I am nothing.

1 Corinthians 13:2 (Word English Bible, 2002)

Part I

Introduction

1

1
Introduction

1.1 MOTIVATION

The software market is flourishing, and is growing at a spectacular rate. Be-
tween 2003 and 2010, the international product software industry has grown
with 64% (est.), sustaining an average year-over-year growth of about 7.3% [OECD
2010]. Software-producing organizations strive for high levels of end-user sat-
isfaction [Van der Schuur et al. 2011c], especially since customer demands re-
garding software quality are identified as the second factor ‘of high importance’
for innovation. Or as the organization for economic co-operation and develop-
ment (OECD) states: ‘As society in general comes to depend more on ICT and other
products which are driven by software to conduct civic, economic, and social activities,
user-centered functionality requirements will increasingly guide software and other
ICT innovations. And users themselves — individuals, firms, and governments —
will play a growing participatory role in driving this innovation’ (OECD, Innovation
Strategy 2009 [Lippoldt and Stryszowski 2009]).

The motivation for this research lies in the fact that in their continuous strive
to reach higher levels of end-user satisfaction and customer satisfaction, software-
producing organizations donot recognize, and are thus unable to use, the broad
potential of knowledge of in-the-field software operation. For example, less
than one-third of these organizations makes use of crash and usage feedback
reports to acquire knowledge of the in-the-field behavior of their software and
end-users [Jansen et al. 2008, Jansen et al. 2010]. Consequently, we observe an
emerging need for a guiding substrate that provides and structures directions
for, inter alia, acquisition, analysis and presentation of such knowledge.

3

Chapter 1 — Introduction

In this dissertation, that substrate is proposed as a body of knowledge for
in-the-field software operation. We define the life cycle of knowledge gained
from such software operation, as well as perspectives on this life cycle. The
aim of this knowledge body is to provide software-producing organizations
with methodical and tool support for improvement of their software processes,
through knowledge of the in-the-field behavior of their software and end-users.

1.2 SCIENTIF IC RELEVANCE

Software production has been extensively researched in both software engi-
neering (SE) and software productmanagement (SPM) domains. Both domains
have been described comprehensively.

First, the domain of software engineering has beendetailed extensively through
the Software Engineering Body ofKnowledge (SWEBOK),which identifies soft-
ware engineering knowledge areas such as software requirements, design,main-
tenance, configuration management and quality [Abran et al. 2004]. Authorita-
tive works from Sommerville [Sommerville 2007], Pfleeger and Atlee [Pfleeger
and Atlee 2009] and Pressman [Pressman 2010] are used by software engineers
as a software engineering guide and reference. Second, similar to the software
engineering domain, the domain of software product management has been
described thoroughly. Product software concepts have been identified by Xu
and Brinkkemper [Xu and Brinkkemper 2007], which are used as a basis for
the software product management reference framework developed by Van de
Weerd et al. [Van de Weerd et al. 2006, Van de Weerd 2009]. The framework
identifies software product management business functions such as portfolio
management, product roadmapping, requirements management and release
planning. Software product management maturity models from Van deWeerd
et al. [Van deWeerd et al. 2010] andVan Steenbergen et al. [Van Steenbergen et al.
2010] are used by software product managers as SPM guide and reference.

Although above references are rich resources for software engineers and
software product managers, particular software production aspects that are
part of both software engineering and software product management domains,
are only vaguely described and underexposed till date. Examples are the in-
the-field operation of software, the tracing and monitoring of such operation,
aswell as integration andutilization of knowledge of such operation in software
processes such as software engineering and software product management.

In this dissertation, these aspects of software production are explored, and
described by the software operation knowledge framework: a structure that
describes parties, perspectives and life cycle processes related to knowledge

4

Positioning the Research

of in-the-field software operation. Using multiple research methods as part of
conducting design research [Vaishnavi andKuechler 2009], several artifacts that
are part of the framework are designed, developed and empirically evaluated.
For example, this dissertation research presents a novel technique for generic
recording and visualization of in-the-field software operation. We show that
the technique enables software vendors get a uniform insight in operation of
their software in the field, and contributes to reduction of softwaremaintenance
effort. We present a template method for situational integration of operation
information in software processes. We show that by instantiating the generic
template method, situational instantiations of the method are constructed. Us-
ing the template method, software-producing organizations can improve their
particular software processes with acquired software operation information.
A third artifact that is presented in this dissertation is the software operation
summary, a medium for presentation of software operation information. We
show that the summary increases awareness of in-the-field software operation
throughout software-producing organizations, and demonstrate that it con-
tributes to the reach of consensus on software maintenance task prioritization.
All artifacts constituting the software operation knowledge framework are de-
scribed in detail in section 1.5.

1.3 POSIT IONING THE RESEARCH

1.3.1 Product Software

Product software accounts for substantial economic activity all over theworld [Lip-
poldt and Stryszowski 2009, OECD 2010]. In 2010 (2003), the total market of the
product software industrywas estimated to be 325 (199) billionUSD, 9% (8.4) of
the overall worldwide ICT spending of 3.6 trillion USD (2.3). ‘Software spending
has increased more rapidly (by 7.3% a year) than computer hardware (5.9%) [. . .]Com-
munications services and hardware spending have increased by 6.6%’ [OECD 2010].

The economic importance of the product software phenomenon has been
observed by Xu and Brinkkemper [Xu and Brinkkemper 2007], which induced
them to define the concept of product software. In this dissertation, we use
their definition of product software:

Product software—Apackaged configuration of software components
or a software-based service, with auxiliary materials, which is released
for and traded in a specific market [Xu and Brinkkemper 2007].

5

Chapter 1 — Introduction

D
ev

el
op

m
en

t
pe

rs
pe

ct
iv

e

- Release planning
- Design methods

Requirements and
Architecture

- Programming
- Testing
- Configuration Mgmt.

Development

- Licensing
- Documentation
- Beta and Launch

Delivery

- Installation
- Training
- Customer service

Deployment

So
ci

et
al

pe

rs
pe

ct
iv

e
- Intellectual property
- Import / export

Laws and Regulations

- Startups
- Business models
- Business culture

Entrepeneurship

- Markets
- Industry structures

Economy

- Technology
- Educational system
- Capital

Resource
Provisioning

C
om

pa
ny

 p
er

sp
ec

tiv
e

- Market analysis
- Product lifecycle management
- Technology management

Product Strategy

- Services portfolio
- Marketing
- Localization and customizations

Sales and Services

Strategic Management

- Product investment
- Resource management
- International organization

Process and Quality

 - Method and project management - Knowledge management - Quality systems

Figure 1.1 Research framework for product software [Xu and Brinkkemper 2007, Jansen
2007]

Product software is different from embedded software, since product soft-
ware is sold separately from the hardware on which it will be operating. Fur-
thermore, product software is different from tailor-made software, since it is
delivered to a large number of customers and is operating in a wide variation
of hardware and software environments [Xu and Brinkkemper 2007].

The research framework for product software (proposed by Xu and Brink-
kemper [Xu and Brinkkemper 2007] and adapted by Jansen [Jansen 2007]; see
figure 1.1) is composed of three perspectives from which the management of
product software can be seen: the development perspective, the company per-
spective and the societal perspective. The development perspective concerns
the processes that eventually produce software products that can readily be de-
ployed at the customer site [Jansen 2007]. In relation to the software life cycle,
the development perspective covers development, delivery and deployment
processes. The company perspective concerns all non-development processes
such as marketing, resource management, knowledge management, etc. Fi-
nally, the societal perspective covers external factors that may influence a prod-
uct software vendor (e.g. laws, regulations, etc.). The focus of this dissertation
is on improvement of, inter alia, all processes referred to by the product soft-
ware research framework, through software operation knowledge.

6

Positioning the Research

Figure 1.2 Continuous customer configuration updating model [Jansen 2007]

The release and trading activities referred to in the product software defini-
tion not only include the release of the product software into the market, but
also the deployment of the software at the customer site, training users and po-
tentially adaptation, integrations with other applications, customizations and
maintenance services [Xu and Brinkkemper 2007]. Together with design and
development processes, release and trading processes are part of the software
life cycle [Davis et al. 1988, ISO/IEC 2008].

The continuous customer configuration updating model of Jansen [Jansen
2007] distinguishes two parties over which four software life cycle processes
are divided: development and release processes are functioning at the soft-
ware vendor site, deployment and usage processes at the customer site (see fig-
ure 1.2). This dissertation research covers both customer and software vendor
parties: its focus is on improvement of processes of software vendors through
knowledge that is acquired software operating at the vendor’s customers. The
concept of software operation knowledge, however, is best reflected by the feed-
back arrow from ‘usage’ to ‘development’: based on logging and feedback poli-
cies, software operation knowledge is acquired from in-the-field software op-
eration, which can be used to support or improve software processes (e.g. soft-
ware development).

7

Chapter 1 — Introduction

1.3.2 Process Improvement

Software process improvement has been research extensively for the past decades.
A multitude of approaches has been proposed to improve (aspects of) soft-
ware processes [Hall et al. 2002], but many are considered unwieldy [Conradi
and Fuggetta 2002]. For example, the Capability Maturity Model Integration
(CMMI)may take twenty to twenty-eightmonths to be implemented [SEI 2010].
While some studies show that higher level CMMI companies are producing
more reliable andpredictable software [Fitzgerald andO’Kane 1999, Beecham et al.
2003], CMMI is frequently found too time-consuming or too complex to com-
prehend, implement and maintain effectively [Kuilboer and Ashrafi 2000, Sta-
ples et al. 2007, Smite and Gencel 2009]. Although derivatives of CMMI such as
ISO/IEC 15504 (also known as SPICE, software process improvement and ca-
pability determination) were designed to be rapid and more flexible software
process assessment methods [Dorling 1993], it is found that the capabilities
stipulated in ISO/IEC 15504 do not necessarily improve project performance
in small organizations [Rout et al. 2007].

Aforementioned studies show that software process improvement may fail
from its own success: software-producing organizations implementing soft-
ware process improvement approaches may be structurally hindered by addi-
tional administrative overhead induced by the improvement approach. This
is confirmed by the recent departure from fixed-level maturity models (such as
CMMI and ISO/IEC 15504) towards focus area maturity models, which are de-
signed to provide more guidance in incrementally improvement of software
processes [Van Steenbergen et al. 2010].

The focus of this research is on process improvement through software oper-
ation knowledge: it is investigated how software operation knowledge can con-
tribute to improvement of software processes, instead of (or as a supplement to)
process improvement through top-heavy, prescriptive frameworks and meth-
ods. This research is an effort to aid software vendors in finding the delicate
balance between reaping the fruits of effective implementation of each of the
software operation knowledge life cycle processes, and investing resources in
implementation of these processes.

1.3.3 Software Operation Knowledge

In 1978, Stavely already argued that ‘software system designerswould benefit greatly
from feedback about the consequences of a proposed design, if this feedback could be
obtained early in the development process’ [Stavely 1978]. In the following years,

8

Positioning the Research

Identification of SOK
utilization goals and
associated operation
knowledge demands

Utilization PresentationIntegrationAcquisition Identification

Acquisition and mining of
software operation data,
resulting in software
operation information

Integration of operation
information in product
software processes

Presentation of (integrated)
software operation
information

Structural usage of
software operation
knowledge in software
processes

Data Information Knowledge

interpretationrelation

Figure 1.3 Software operation knowledge life cycle

several studies focused on involving software feedback in the software develop-
ment life cycle [Kaiser et al. 1988, Selby et al. 1991,Musa 1993, Porter 1993,Wieg-
ner and Nof 1993, Lehman 1996, Lehman and Ramil 1999], and on automa-
tion [Murphy 2004, Barry et al. 2007] and prediction [Nagappan et al. 2006, Zim-
mermann et al. 2008, Nagappan et al. 2010] of software feedback. Moreover,
various studies were initiated to measure and improve the (perception of) be-
havior and operation of in-the-field software [Madhavji et al. 2006, Ebert and
Dumke 2007], particularly the performance [Mathews 1987, Putrycz et al. 2005],
quality [Mockus et al. 2005, Liu and Xu 2007] and usage [Kallepalli and Tian
2001, Hilbert and Redmiles 2000] of the software.

In this dissertation, we propose to integrate these properties of software
operation in a single concept called software operation knowledge (abbreviated
SOK) — in essence, it represents all knowledge one can acquire of the in-the-
field operation of software. We research the life cycle of software operation
knowledge, and we investigate how processes of this life cycle can be used for
structural improvement of the software processes of software-producing orga-
nizations.

A hierarchy of data, information and knowledge [Kettinger and Li 2010] can
be recognized in the software operation knowledge life cycle (see figure 1.3).
After software operation knowledge demands have been identified, software op-
eration data can be acquired. Relation of selected operation data results in soft-
ware operation information, which then can be integrated in software processes
and presented on various media. Interpretation of operation information results
in software operation knowledge; structural use of such knowledge results in
SOK utilization. A more detailed explication of the SOK life cycle is provided
in chapter 2.

9

Chapter 1 — Introduction

1.4 RESEARCH APPROACH

1.4.1 Research Questions

Supported by the previous sections, the main research question of this disser-
tation is stated as follows:

MRQ —How can software processes of product software vendors be improved
through software operation knowledge?

Although knowledge of in-the-field software operation is a broad topic that
increasingly receives attention from both industry and science, it was still ill-
defined at the time this research started. Authoritative works on software mea-
surement [Ebert and Dumke 2007] and feedback [Madhavji et al. 2006] recog-
nize the concept of software operation knowledge, but fail to identify the po-
tential role of such knowledge in software process improvement.

To cover the complete software operation knowledge life cycle (see figure 1.3),
six sub questions are formulated: each of the questions addresses at least one
process of this life cycle.

RQ 1 —What is the concept of software operation knowledge?

The first step in answering themain research question is to define the concept
of software operation knowledge, for instance by identifying different types
of operation knowledge that are considered relevant and valuable for product
software vendors (see figure 1.3). A reference framework is needed to allow ad-
equate and consistent reasoning about software operation knowledge, as well
as to effectively define the life cycle of software operation knowledge, and il-
lustrate potential uses of such knowledge in the improvement of a vendor’s
products and internal software processes.

Second, to further establish and understand roles and applications of soft-
ware operation knowledge between individual product software vendors, a
classification of external software operation knowledge practices of vendors
that successfully participate in software ecosystems, is needed. Therefore, the
second sub question is

RQ 2 — How can software operation knowledge practices within software
ecosystems be classified?

Having identified types, roles and applications of software operation knowl-
edge, it needs to be identified how product software vendors can benefit from
such knowledge. Hence, the following four sub questions are related to soft-

10

Research Approach

ware processes that can be improved through software operation knowledge.
Before such knowledge can be used within organizations, underlying software
operation data should be acquired. The third sub question is therefore stated
as follows:

RQ 3 — How can software maintenance effort be reduced through generic
recording and visualization of operation of deployed software?

Once software operation data has been acquired, software operation infor-
mation can be extracted from these data (see figure 1.3). Software vendors are
in need of methods to structurally integrate extracted operation information
with their software processes. The fourth sub question is related to realizing
process improvement through integration of extracted operation information
and is defined as:

RQ 4 — How can product software processes effectively be improved with
acquired information of in-the-field software operation?

Part of decision-making in software processes is presentation and visualiza-
tion of the information on which decisions are based. To support steering and
decision-making based on software operation knowledge, media or carriers are
needed for presentation and visualization of operation information. Software
operation knowledgemedia can, for instance, advance effective communication
and discussion related to software operation knowledge, as well as contribute
to (common) understanding of such knowledge. The fifth sub question is re-
lated to the creation of a medium on which such operation information can be
summarized, and is formulated as follows.

RQ 5—Can prioritization of softwaremaintenance tasks be improved through
the concept of a software operation summary?

Finally, effective utilization of software operation knowledge should lead
to concrete and measurable process improvement at the software vendor site.
Rapid development developments in industry demand software-producing or-
ganizations to be dynamic and agile, highly responsive to changes, while devel-
oping software at high speed, low cost and according to high quality standards.
This sixth and final sub question focuses on changes in performance and usage
of web services:

11

Chapter 1 — Introduction

RQ 6 — How can responsiveness to changes in service performance and us-
age be increased through utilization of knowledge of in-the-field software oper-
ation?

Both the main research question and its sub questions are based on the hy-
pothesis that they can be answered by providing support to product software
vendors in the form of frameworks, methods or software tools. The following
section describes the research approach that underlies the formation of these
design artifacts.

1.4.2 Research Description

The field of research that covers application of information technology (IT) to
human organizations is information systems (IS) research. Information sys-
tems are implemented within organizations for the purpose of improving the
effectiveness and efficiency of that organization [Hevner et al. 2004]. Capa-
bilities of the information system and characteristics of the organization, its
work systems, its people, and its development and implementationmethodolo-
gies together determine to which extent that purpose is achieved [Silver et al.
1995, Beynon-Davies 2010].

The information science discipline is characterized by two complementary
but distinct paradigms: behavioral science and design science. Both paradigms
are combined by the information systems research framework of Hevner et
al. [Hevner et al. 2004]. Figure 1.4 shows the instantiation of the framework
with the research of this dissertation into software operation knowledge.

IS Research
Information science research typically is a combination of behavioral sci-
ence and design science. Behavioral science seeks to develop and justify
theories that explain or predict organizational and human phenomena
surrounding the analysis, design, implementation, management, and use
of information systems [Hevner et al. 2004]. Design science, on the other
hand, seeks to create innovations that define the ideas, practices, technical
capabilities, and products throughwhich the analysis, design, implemen-
tation, management, and use of information systems can be effectively
and efficiently accomplished [Denning 1997, Tsichritzis 1998]. Contribu-
tions to information science research involve both paradigms [March and
Smith 1995].

12

Research Approach

Environment

People
- Software engineers
- Product managers
- Customer supporters
- SOK identification-
utilization skills

Organizations
- Product software
vendors
- Software processes
- Company culture

Technology
- Development
infrastructure
- Development tools
- Software feedback
infrastructure

IS Research

Develop / Build
- Theories
- Artifacts

Justify / Evaluate
- Case study
- Action research study
- Survey
- Focus group
- Expert validation
- Experimentation
- Classification

Assess Refine

Knowledge Base

Foundations
- Software process
improvement literature
and theory
- Product software
literature and theory
- Software Operation
Knowledge literature
and theory
- Method engineering
literature and theory

Methodologies
- Exploratory case
study research
- Literature research
- Design research
- Action research
- Survey research

Relevance Rigor

Application in the
Appropriate Environment

Additions to the
Knowledge Base

Business
Needs

Applicable
Knowledge

Figure 1.4 Dissertation research applied to the information systems research framework
(adapted from [Hevner et al. 2004])

As this dissertation research is information systems research, it is a com-
position of the behavioral science and design science paradigms. Part of
this research is the construction and evaluation of several design artifacts,
such as the software operation knowledge framework and the template
method for software operation knowledge integration (see table 1.1). The
artifacts are built and evaluated through several justification and evalua-
tion instruments.

Environment
The environment defines the problem space in which the phenomena of
interest reside, and in which the research is conducted. The space is com-
posed of industry people, business organizations and their existing and
planned technologies and practices. Also, the environment incorporates
goals, tasks, problems and opportunities that define business needs as
they are perceived by people within the organization [Hevner et al. 2004].
Examples of people that are relevant in the problem space of this research
are practically all people employed by product software vendors that can
be effectively involved in, and benefit from software operation knowledge
processes (e.g. software engineers, customer supporters, development
managers, product managers, product software trainers, etc.). Obviously,

13

Chapter 1 — Introduction

each employee possesses and lacks particular process skills that influence
the problem space. Consequently, relevant organizations in this research
problem space are organizations that develop and publish product soft-
ware and have functioning product software processes (e.g. software de-
velopment, software maintenance, software product management, soft-
ware licensing, software training, research and innovation, etc.). Process
maturity, company culture and history are factors that impact the prob-
lem space. The third relevant factor in the environment is technology. It
includes process infrastructures (e.g. software development infrastruc-
ture, customer support infrastructure, etc.) as well as software tools that
are used or desired to support these processes. As a composition of peo-
ple, organizations and technology, the environment defines the business
needs or ‘problem’ that can be perceived by the researcher. Research rel-
evance is assured by framing research activities to address such needs or
problems.

Knowledge base
The knowledge base provides the scientific foundations (e.g. theory and
literature) andmethodologies (e.g. the systems of methods used in a par-
ticular area of information systems research) from and through which in-
formation science research is performed [Hevner et al. 2004]. As detailed
in section 1.3, prior research related to product software, software opera-
tion knowledge and software process improvement forms the foundation
and context for this research in the form of theories, frameworks, models,
methods, etc. Research rigor is achieved by appropriately and effectively
applying existing foundations and methodologies. Contributions of be-
havioral science and design science in information systems research are
applied to business need in a particular environment, and add to the con-
tent of the knowledge base for further research and practice [Hevner et al.
2004].

1.4.3 Research Methods

The research in this dissertation is carried out by using several research meth-
ods: case study research, field study research, action research and survey re-
search. Simultaneously, as stated, this dissertation research is a composition of
the behavioral science and design science paradigms. Table 1.1 lists per chapter
what are applicable science paradigms, the applied research methods, result-
ing design artifacts and related SOK life cycle processes. Next, characteristics
and strengths of each of the research methods are listed.

14

Research Approach

Action research
Action research is a research method that it is grounded in practical ac-
tion, aimed at solving an immediate problem situation while carefully
informing theory. Typical action researchers believe that human orga-
nizations, as a context that interacts with information technologies, can
only be understood as whole entities. The fundamental contention of
the action researcher is that complex social processes can be studied best
by introducing changes into these processes and observing the effects of
these changes [Baskerville 1999]. Action research embodies a strategy for
studying change in organizations, involving the formulation of theory, in-
tervention and action-taking, in order to introduce change into the study
subject and analysis of the ensuing change behavior of the study subject.
As a result of its orientation toward change, action research is relevant
for the study of information systems development [Baskerville and Pries-
Heje 1999]. In this dissertation research, action research has been per-
formed to study application of the software operation knowledge inte-
gration template method (see chapter 5). To ensure rigor and relevance of
this action research, we adhere to a set of interdependent action research
principles and associated criteria [Davison et al. 2004].

Case study
Case study is the study of the particularity and complexity of a single case
or multiple cases, coming to understand case activity within important
circumstances [Stake 1995]. Case study research involves the close exam-
ination of people, topics, issues, or programs, for purposes of understand-
ing [Hays 2003] and theory building and testing [Eisenhardt 1989, Dul
andHak 2008]. In this dissertation research, case studies are performed to
build and evaluate design artifacts such as the software operation knowl-
edge framework (see chapter 2), to evaluate software tools such as soft-
ware operation knowledge acquisition tools (see chapter 7), and to build
theories such as a classification of software operation knowledge propa-
gation practices (see chapter 3). As stated byDarke et al. [Darke et al. 1998],
successfully completing case study research within the field of informa-
tion systems requires initiative, pragmatism, the ability to take advantage
of unexpected opportunities, and optimism and persistence in the face of
difficulties and unexpected events, particularly during data collection ac-
tivities. Case study protocols [Jansen and Brinkkemper 2008, Yin 2009]
were followed for collection of case study data.

15

Chapter 1 — Introduction

Field study
A field study is used to monitor use of an artifact in multiple projects
or environments [Hevner et al. 2004]. There is no hard and straightfor-
ward distinction between performing multiple in-depth case studies a
field study [Klein and Myers 1999]. In this dissertation, the term ‘field
study’ is used to denote the monitoring and evaluation of an artifact’s in-
the-field performance andbehavior throughmixed-method research [Sande-
lowski 2000, Jansen and Brinkkemper 2008]. In chapter 4, as part of a field
study, two case studies and an experimentwere conducted tomonitor and
evaluate both behavior and performance of a software operation knowl-
edge acquisition and presentation tool.

Focus group
The focus group research method collects data through group interac-
tion on a topic determined by the researcher. Focus groups should be
distinguished from methods that collect data from naturally occurring
group discussions where no one acts as an interviewer [Morgan 1996].
In this dissertation, focus groups composed from experts from industry
were used to evaluate the software operation knowledge framework (see
chapter 2) as well as the software operation knowledge acquisition and
presentation technique and tool (see chapter 4).

Survey research
Asurvey is a comprehensive system for collecting information to describe,
compare or explain knowledge, attitudes and behavior. The survey in-
strument is part of a larger survey process with clearly-defined activi-
ties such as survey planning and scheduling, survey design, participant
selection, data analysis and result reporting [Pfleeger and Kitchenham
2001]. Surveys can be supervised, semi-supervised and unsupervised.
In this dissertation research, we designed and carried out an unsuper-
vised survey to investigate expectations regarding the software operation
summary concept (see chapter 6).

Note that the literature researchmethodhas been omitted from the list above,
since this method was used integrally throughout the research.

1.5 DISSERTATION OUTLINE

Apart from its introduction (chapter 1) and conclusion (chapter 8), this disserta-
tion is composed of six chapters that all correspond to one of the research ques-
tions described in section 1.4.1. Furthermore, each of these six chapters covers

16

Dissertation Outline

at least one process of the software operation knowledge life cycle, of which a
detailed description is provided in chapter 2). Chapters 2 and 3 first cover the
introduction of the software operation knowledge concept; chapters 4 to 7 cover
the subject of process improvement through software operation knowledge.

Table 1.1 provides an overview of the outline of this dissertation by associ-
ating, inter alia, chapters, research questions, research methods and SOK life
cycle processes. Next, all chapters are described in detail.

Ch. Research
question

Science
paradigms

Research
methods Design artifacts SOK life cycle

processes

2 RQ 1 Behavioral,
Design

Focus group,
case studies

SOK definition; SOK
framework Identification

3 RQ 2 Behavioral,
Design Case studies SOK propagation

practices classification Utilization

4 RQ 3 Design Field study,
Focus group

SOK acquisition and
presentation
technique; SOK
acquisition and
presentation tool

Acquisition,
Presentation

5 RQ 4 Design Action research SOK integration
template method Integration

6 RQ 5 Behavioral,
Design

Survey,
case study

Software operation
summary Presentation

7 RQ 6 Design Case study
SKU concept, indices
and report; SOK
presentation tool

Presentation,
Utilization

Table 1.1 Overview of this dissertation research

Chapter 1: Introduction
The first chapter describes the motivation and relevance of this research.
Furthermore, the research is positioned in context and described through
research questions. Finally, the outline of this dissertation research is pre-
sented.

Chapter 2: A Reference Framework for SOK Utilization
This chapter introduces the concept of software operation knowledge and
the software operation knowledge framework. The software operation
knowledge concept is an effort to encompass and categorize the plethora
of definitions and metrics that exist to respectively describe and mea-
sure software operation. Furthermore, by identifying parties, perspec-
tives and processes that constitute the software operation knowledge life
cycle, the software operation knowledge framework illustrates software

17

Chapter 1 — Introduction

operation knowledge flows through software-producing organizations.
Simultaneously, the framework serves as a guiding substrate in determin-
ing the scope of this research. The framework was evaluated through
three case studies and a focus group questionnaire. This chapter has
been published as a full research paper on the EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA) [Van der
Schuur et al. 2010].

Chapter 3: On the Role of SOK within Software Ecosystems
In this chapter, the concept of software operation knowledge is further es-
tablished by identification and classification of operational software op-
eration knowledge practices of software-producing organizations in soft-
ware ecosystems. The classification is constructed based on four case
studies. It illustrates the value and importance of software operation knowl-
edge within the context of software ecosystems. This chapter has been
published as a full research paper on the International Conference on
Management of EmergentDigital EcoSystems (MEDES) [Vander Schuur et al.
2011d].

Chapter 4: Reducing Maintenance Effort through SOK
Chapter 4 is the first chapter that covers the subject of process improve-
ment through software operation knowledge. As an attempt to increase
efficiency of software maintenance processes, this chapter introduces a
technique and corresponding prototype tool [Nuntia 2011] for generic ac-
quisition and presentation of in-the-field software operation. Both the
technique and tool are evaluated through a field study (consisting of an
experiment and two case studies) and a focus group. This chapter has
been published as a full research paper on the European Conference on
Software Maintenance and Reengineering (CSMR) [Van der Schuur et al.
2011b].

Chapter 5: Pragmatic Process Improvement through SOK
In this chapter, the template method for integration of software opera-
tion information with product software processes is introduced to aid
and stimulate software-producing organizations in structurally improv-
ing their functioning processes through acquired operation information.
The templatemethodhas been evaluated through an action research study
of ten months, during which the template method was instantiated for
three software processes of a European software vendor. Based on the
study, four lessons learned are identified. This chapter has been pub-

18

Dissertation Outline

lished as a full research paper on the International Conference on Product
Focused SoftwareDevelopment andProcess Improvement (PROFES) [Vander
Schuur et al. 2011a].

Chapter 6: Leveraging SOK for Prioritization of Maintenance Tasks
This chapter introduces the software operation summary as a strive to
support software processes by providing software operation knowledge,
more specifically, to improve prioritization of softwaremaintenance tasks
by fostering the reach of consensus on such prioritization. Soundness
and validity of the summary have been evaluated through an extensive
survey among Dutch product software vendors as well as a case study
at an European software vendor. Survey results confirm the need for a
software operation summary. Furthermore, through the survey, crash re-
port data types are identified on which such a summary, used for foster-
ing reach of consensus on prioritization of software maintenance tasks.
Through the case study, the value of a software operation summary that
is based on crash report data, is empirically evaluated. This chapter has
been published as a full research paper on the International Conference
on Software Process and Product Measurement (MENSURA) [Van der
Schuur et al. 2011c].

Chapter 7: Becoming Responsive to Service Usage and Performance Changes
In this chapter we introduce service knowledge utilization (SKU) as an
approach to increase a software vendor’s flexibility, and responsiveness
to changes in the performance and usage of its service-based, online soft-
ware. Furthermore, we introduce the SKU report, a report that is com-
posed of three metrics-based indices expressing service performance, us-
ability and client utilization (the tool described in this chapter can be
considered as an initial version of the tool described in chapter 4). The
report was evaluated through a case study at a Dutch software vendor.
This chapter has been published as a full research paper on the Interna-
tional Workshop on Software Evolution and Evolvability (Evol) [Van der
Schuur et al. 2008].

Chapter 8: Conclusion
In the last chapter of this dissertation, the main research question as well
as all sub research questions are answered. Furthermore, research impli-
cations and limitations are discussed. Finally, we provide a reflection on
this dissertation research and describe future research perspectives.

19

Chapter 1 — Introduction

20

Part II

The Concept of
Software Operation Knowledge

21

2
A Reference Framework

for Utilization of
Software Operation Knowledge

ABSTRACT

Knowledge of in-the-field software operation is a broad but ill-defined and frag-
mentarily supported subject and it is unclear how software vendors can take ad-
vantage of such knowledge. This paper introduces and defines software opera-
tion knowledge to unify existing definitions, and presents an empirically eval-
uated framework that is designed to aid product software vendors in gaining
insight in the potential role of such knowledge in advancement of their prod-
ucts, practices and processes. The results of extensive case studies performed
at three European software vendors show that if used correctly, software op-
eration knowledge enables vendors to increase software quality and improve
end-user experience. However, case study results also illustrate that the state of
knowledge integration is still pragmatic and immature. Vendors have to adapt
their workflows, processes and tools to enable structural software operation
knowledge utilization.∗

∗This work has been published as A Reference Framework for Utilization of Software Operation
Knowledge in the proceedings of the 36th EUROMICRO Conference on Software Engineering and
AdvancedApplications (SEAA2010) [Vander Schuur et al. 2010]. It is co-authored by Slinger Jansen
and Sjaak Brinkkemper.

23

Chapter 2 — A Reference Framework for SOK Utilization

2.1 INTRODUCTION

Software vendors have recently begun discovering the yields of software and
end-user feedback. For example, by implementing feedback reporting in its
operating systems, a large software vendor discovered that circa 50% of fail-
ures are caused by one percent of software bugs [Brelsford et al. 2002]. If used
correctly, feedback enables software vendors to establish how successful their
products and services are at achieving their goals in the field. These goals are
dependent on software end-users, and constitute aspects such as performance,
quality and usability. With the increase of software complexity and ever higher
end-user expectations, advanced techniques are required tomonitor operations
of software in the field. Common examples are crash reporting applications
and service performance monitoring tools.

More exoticmechanisms exist, such as ‘software tomography’ [Bowring et al.
2003] for monitoring specific aspects of an application, end-user tracing for UI
improvement, as well as mechanisms for providing and delivering end-user
feedback. The software community has picked up on the need for tools to
support software and end-user feedback concerns. Google, for example, has
created the Google Website Optimizer [GWO], which enables website builders
to leverage end-user behavior by presenting end-users with different user in-
terfaces and then measuring differences in conversion rates, site effectiveness,
visitor satisfaction, etc. As another example, Mozilla has developed the Firefox
Test Pilot plug-in [MLTP] to get operation feedback and usage traces from circa
one percent of its end-users.

It remains unclear, however, how and to which extent software and end-
user feedback can be used to improve a software vendor’s practices, processes
and products. Several research examples that focus on specific solutions and
domains can be found. The Skoll project [Memon et al. 2004] focuses on user
community-supported quality assurance of software operating in large config-
uration spaces. Furthermore, the GAMMA project [Orso et al. 2002] uses soft-
ware tomography to gather useful information from deployed software and fo-
cuses on determining effective probe insertion locations. While these examples
show that research in this area is fragmented, software and end-user feedback
are generally used as main data source.

An integrated view is needed that provides product software vendors with
insight in the potential role of such feedback in advancement of their products,
practices and processes.

24

Software Operation Knowledge (SOK)

The contribution of this paper is twofold:

• A definition is introduced to unify existing definitions and uses of software
feedback, as well as types of knowledge emerging from in-the-field software
operation

• A framework is presented that models the life cycle of such knowledge as
well as product software perspectives from which processes of this life cycle
can be perceived.

Both the definition and the framework are empirically evaluatedwith a ques-
tionnaire and three investigative case studies at European software vendors.
This paper continues with placing our work into context and with the intro-
duction of the software operation knowledge definition (section 2.2) and frame-
work (section 2.3). The research evaluation approach is described in section 2.4.
Next, results of our empirical study are presented in sections 2.5 and 2.6. Fi-
nally, limitations of this research are discussed in section 2.7 and research con-
clusions are presented in section 2.8.

2.2 SOFTWARE OPERATION KNOWLEDGE (SOK)

Till date, various research has been conducted concerning the subject of knowl-
edge of in-the-field software operation. For example, software measurement,
monitoring and feedback techniques have been proposed [Ebert and Dumke
2007, Madhavji et al. 2006, Rompaey et al. 2009] and software operation data ac-
quisition techniques and tools have beendeveloped [Bowring et al. 2003, Vander
Schuur et al. 2008]. Little research has been initiated to incorporate all pro-
cesses in one framework, however. Selby et al. [Selby et al. 1991] have pro-
posed a framework that supportsmultiple evaluation and feedback paradigms,
but mainly focus on architectural principles for designing metric-driven anal-
ysis and feedback systems; the authors do not address integration, presenta-
tion and utilization aspects of software feedback. The work of Lehman and
Ramil [Lehman andRamil 1999] analyzes and quantifies the impact of feedback
on (improving) ‘the global software process’ and can be seen as an argument
for using software operation knowledge to advance software engineering pro-
cesses. However, the research focuses on process improvement through soft-
ware evolution process measurement andmodeling, and does not consider the
life cycle of feedback itself (as detailed in section 2.3). Tautz and Althoff [Tautz
and Althoff 1997] propose case-based reasoning techniques to reuse software
knowledge, but concentrate on ‘improving productivity and reliability of soft-
ware development’ and do not consider other software engineering processes.

25

Chapter 2 — A Reference Framework for SOK Utilization

In short, knowledge of in-the-field software operation is an emerging and
broad subject and is ill-defined till date. We provide the following definition:

Software Operation Knowledge — Knowledge of in-the-field perfor-
mance, quality and usage of software, and knowledge of in-the-field
end-user software experience feedback.

SOK (κ) consists of four knowledge types: performance (κP), quality (κQ), usage
(κU) and end-user feedback (κF) knowledge. Next, we detail each SOK type in
terms of concepts and metrics that are encountered in research on software
analysis, measurement and feedback1.

2.2.1 Performance (κP)

Software performance can be specified on many types of software resources,
with differentmeasurement units. In their research on performance techniques
for commercial off-the-shelf (COTS) software, Putrycz et al. [Putrycz et al. 2005]
state that software performance characteristics can bedescribed byusing bench-
marks (giving the delay for a component in a particular configuration, for ex-
ample) or by using a causal model based on performance data. As Putrycz
further states, performance data consist of three kinds of data: device demands
(e.g., average CPU time for a component’s operation), interaction attributes (e.g.,
number of required service operations demanded per component operation)
and logical resources (e.g., threads, buffers and caches associated with a compo-
nent). According to Johnson et al. [Johnson et al. 2007], elapsed time, trans-
action throughput and transaction response time are among most common
ways to specify software performance. In their research, performance areas
are (1) response time for input and output operations, (2) maximum sustain-
able throughput and response time, and (3) time consumed by each software
layer. The performance of service-based software in particular is measured in
terms of throughput (number of service requests served in a given time frame)
and latency (round-trip time between sending a request and receiving the re-
sponse), where higher throughput and lower latency values represent higher
service performance [Mani andNagarajan 2002]. Software performance knowl-
edge (κP) consists of all performance data types identified by Putrycz, as well
as the performance specifications of Johnson and both throughput and latency
metrics.

1Note that the concepts andmetricsmentioned are considered characteristic, exemplary and not
complete.

26

Software Operation Knowledge (SOK)

2.2.2 Quality (κQ)

Several software quality models with diverse sets of characteristics have been
proposed, and as observed by Bøegh [Bøegh 2008], many perspectives on what
composes a software quality model’s key quality characteristics exist. The ISO
9126 quality model [ISO/IEC 2001] is well-known and accepted in both indus-
try and empirical research. The model classifies software quality into a struc-
tured set of characteristics and sub characteristics, divided into three quality
views: internal quality, external quality and quality in use. While the internal
quality view (based on the characteristics Functionality, Reliability, Usability, Ef-
ficiency,Maintainability, Portability) is concerned with static software properties
that do not depend on software operation, the external quality view (which
is based on the same characteristics as the internal quality view) is related to
metrics applicable to the dynamic aspects of deployed software operating on
computer hardware (e.g., number of exceptions, crash report details and mean
time between failures [Bøegh 2008]). The quality-in-use view of the model
(based on characteristics Effectiveness, Productivity, Safety, Satisfaction) is con-
cerned with end-users performing tasks by using software in the field. Char-
acteristics related to the quality-in-use view can only be measured when the
deployed software product is used in real conditions. Examples of metrics re-
lated to this view include end-user productivity and end-user satisfaction. As
shown by Gyimóthy et al. [Gyimóthy et al. 2005], software quality can be esti-
mated by means of source code (metrics) analysis: forming the DNA of soft-
ware, source code determines behavior of in-the-field software operation (e.g.,
algorithm complexity influences software quality).

Quality of service-based software andWeb services has also been researched
extensively. Yu and Lin [Yu and Lin 2005] propose a set of QoS attributes (e.g.
Cost, Reliability, Availability), as impact factors of service selection algorithm
creation. In their research on the construction of a Web service quality model,
Zeng et al. [Zeng et al. 2003] present four generic service quality criteria: Execu-
tion price, Reliability, Availability and Reputation. With respect to the SOK con-
cept, characteristics associated with both external quality and quality-in-use
views, as well as the source code metrics and service quality metrics referred
to are covered by the software quality knowledge type κQ.

2.2.3 Usage (κU)

Software usage describes how software is used in the field by its end-users and
how software responds to end-user behavior. Analogously to the quality-in-

27

Chapter 2 — A Reference Framework for SOK Utilization

use view of the ISO 9126 quality model, knowledge of software usage can only
be acquired during in-the-field software operation. The usagemodel presented
by Simmons [Simmons 2006] contains three tiers: supporting data, usage overview
and usage details, where the usage details tier contains actual usage data. Soft-
ware usage is described in terms of user interface paths, method calls and object
initiations.

Concerning service-based software andWeb services, software usage is spec-
ified in terms of service requests, webmethod calls and service error types [Kal-
lepalli and Tian 2001]. κU is covered by the usage details tier of Simmon’s usage
model: we consider the extent to which the software usage specifications of
tiers other than the usage details tier contribute to this knowledge type, as min-
imal.

2.2.4 End-user Feedback (κF)

End-user feedback is a collection of end-user software appreciation, criticism
on certain software usage aspects, and general software experience. For exam-
ple, feedback from end-users frequently consists of (1) a subject that describes
the aspect of the software the end-user is giving feedback on, (2) a rating that
quantifies the end-user’s appreciation of the aspect, and (3) feedback motiva-
tion or explanation. Average feedback rating and customer satisfaction level
are metrics corresponding to end-user feedback. In short, end-user feedback
knowledge (κF) consists of all feedback on software operation provided by end-
users of the software.

2.3 SOK FRAMEWORK

Partially based on our observations of industry practices, the software oper-
ation knowledge framework (see figure 2.1) describes the SOK life cycle pro-
cesses, andmodels the flowof software operation data, information and knowl-
edge through software vendor tools andprocesses, from three product software
perspectives. The framework serves as a guiding substrate in determining the
scope of our SOK research, andmight fulfill an equivalent role in other research
initiatives on software engineering and evolution, tool development or change
management. The stakeholders, processes and perspectives that constitute the
framework are detailed in the following sections.

28

SOK Framework

Acquisition

Integration

Presentation

Utilization

Identification

Customer Software Vendor

Customer
Perspective

Company
Perspective

Development
Perspective

behavior

Software
Operation Data

Data Mining +
Abstraction

Relationship
management

Training
modification
Customized

licensing
Pro-active

support

Resource
management

Roadmap
construction

Strategy
determination

Directed
marketing

Informed
development

Usability
improvement

Software
maintenance

Release
management

Management
dashboard
Operation
summary

Usage
summary

Exception type
graph

Bug priority list Usage report

Performance
reportUsage report

Performance
report

IDE

Bug tracker Management
tools

Marketing tools

Support system

Training
software

operation information

operation
data

 Data Mining +
Abstraction

Logic

data mining logic
abstraction logic

operation knowledge
demands

software
modification

(updates,
licenses,etc.)

Legend
Operation information visualisation

Operation knowledge utilization

feedback
response

Software

Acq.

acquisition criteria

operation
data

License
activation tools

Order
administration

Planning tools

Feedback
history overview

Feedback
summary

Relationship
profile

Figure 2.1 Software operation knowledge framework

29

Chapter 2 — A Reference Framework for SOK Utilization

2.3.1 Stakeholders

The SOK frameworkdistinguishes two stakeholders: software vendors and cus-
tomers. The ‘Customer’ stakeholder represents a software vendor’s business-
to-consumer (B2C) customers as well as business-to-business (B2B) customers.
End-users, or end-users of third party enterprises are consideredB2C customers,
while external software vendors, partners that have licensed software of the
software vendor aswell as end-users of these external software vendors are con-
sidered B2B customers. End-users and their behavior form the initial source of
software operation knowledge; software vendors assemble operation data from
their customers and potentially respond to these data, for example through
their software development, release, marketing or quality assurance processes.
Other parties operating within a vendor’s ‘ecosystem(s)’, like those defined by
Jansen et al. [Jansen et al. 2009], are considered out the scope of the framework.

2.3.2 Processes

The SOK life cycle processes depicted in figure 2.1 form the SOK life cycle and
illustrate the transformation of software operation data (Identification, Acquisi-
tion) via software operation information (Acquisition, Integration, Presentation)
to software operation knowledge (Presentation, Utilization). The processes take
place subsequently, cyclically and independently per SOK type. Five life cycle
processes can be identified:

Identification
The first SOK process encompasses identification of SOK utilization goals
and associated operation knowledge demands. Since software operation
data acquisition potentially introduces a data explosion that hinders soft-
ware vendors to successfully utilize SOK, directed acquisition is required.
The amount of software operation data that is acquired, is controlled by
acquisition criteria. Operation data are associated to one or more SOK
types, and to each type k ∈ κ, a weight w is assigned that represents
the acquisition priority of k. Furthermore, abstraction logic is defined
for software operation data aggregation and encapsulation. Operation
knowledge demands resulting from the utilization process are translated
into acquisition criteria to direct SOK acquisition, and transformed into
mining and abstraction logic to control mining of acquired data. The SOK
identification process results in a set of acquisition criteria, as well asmin-
ing and abstraction logic to steer acquisition of SOK in the next process.

30

SOK Framework

Acquisition
The SOK acquisition process is concerned with a number of sub pro-
cesses. First, the behavior of end-users is translated to software operation
data, taking into account the acquisition criteria defined in the SOK iden-
tification process. Second, software operation data are transferred from
servers or workstations at which the software is deployed, to the software
vendor. Next, based onmining and abstraction logic defined in the previ-
ous process, software operation data sources are identified and software
operation information is extracted from all acquired operation data. Soft-
ware operation information constitutes the input for the SOK integration
process.

Although software operation data are often acquired manually by ex-
tending the software code base with log code or trace classes, software
operation data can also be automatically deduced from deployed soft-
ware [Bowring et al. 2003, Orso et al. 2002, Clause and Orso 2007]. Like
logging, software operation data acquisition can be considered as a typ-
ical cross-cutting concern and can thus be implemented by using aspect-
oriented programming (AOP) techniques [Van der Schuur et al. 2008].
Note that the amount of software operation data that is acquired depends
on both an end-user’s software usage behavior as well as the type of soft-
ware operation knowledge k ∈ κ that is eventually extracted from the
operation data. While operation data associated with most operation
knowledge types (κP, κQ, κU) can be acquired automatically during soft-
ware operation, the amount of acquired operation data associated with
κF depends on and end-user’s willingness to submit feedback.

Depending on security, regulation or capacity constraints, software oper-
ation data may be transferred to the software vendor in real-time or ac-
cording to a schedule. Compression, AOPand tomography techniques [Bow-
ring et al. 2003] can be used to configure and limit the amount of data that
is transferred. Abstraction and data mining techniques are applied to the
operation data stored at the software vendor, to aggregate, generalize or
filter operation data, or to verify the data are representative with respect
to the identified utilization goals. The mining and abstraction of opera-
tion data results in software operation information.

Integration
In the (optional) integration process, software operation information re-
sulting from the acquisition process is integrated into a software vendor’s
existing processes and infrastructures. Existing processes and workflows

31

Chapter 2 — A Reference Framework for SOK Utilization

may have to be adapted, and plug-ins, conversion components or me-
diator services may be developed to make use of the available software
operation information and to enable purposeful, context-dependent pre-
sentation and utilization of acquired SOK. For example, a plug-in may
be developed to integrate software operation information of a particular
code file into integrated development environments (IDE). Also, a soft-
ware information conversion service could be developed to automatically
register unhandled exceptions in the software vendor’s bug tracker.

Presentation
The fourth SOK process is concerned with the presentation of software
operation information. Data resulting from the integration process is vi-
sualized using graphs, diagrams or other presentation artefacts, possibly
by means of the integration plug-ins or tools developed in that process.
For example, based on exception event data, a bar chart can be created
showing exception frequencies per software component. Note that each
of the framework perspectives (described in section 2.3.3) may require a
different visual representation of software operation information, illus-
trating the data at various levels of detail. Especially when presented in
combinationwith historical software operation information or with other
data (e.g., release schedules or bug tracker data), new insights and SOK
are gained in the presentation process.

Utilization
The last SOK process describes processes as well as response actions that
may be the result of effective SOK utilization. For example, integration
and presentation of query timings, exception statistics and usage traces
in an IDE respectively provides software developers with knowledge and
insights about the performance, quality and usage of their software in
the field, which contributes to ‘informed software development’. Also,
acquired software operation knowledge supports concrete decision mak-
ing. For instance, software quality knowledge and end-user feedback
knowledge support usability and release management decisions. In ret-
rospect consideration of the SOK utilization process potentially results in
new operation knowledge demands, which form input for the identifica-
tion process. Also, SOK utilization may result in software modification,
feedback response as well as propagation of SOK to particular stakehold-
ers (e.g. partner vendors).

32

Empirical Evaluation

2.3.3 Perspectives

The route of SOK through integration, presentation and utilization processes
can be observed from three product software perspectives, that find their origin
in the product software research framework of Brinkkemper and Xu [Xu and
Brinkkemper 2007].

First, the Development perspective concerns all processes that contribute to
production of software products that can readily be deployed at customers.
Second, the Company perspective concerns processes indirectly related to soft-
ware development, such as marketing, sales, and quality control. Third, the
Customer perspective represents all factors and processes that influence the ex-
isting relationship between a software vendor and its customers, such as train-
ing, support and relationship management processes.

SOK that is integrated with development tools, supports software engineer-
ing processes or results in software modifications, routes through the develop-
ment perspective. Software operation knowledge that is instrumental to the in-
direct effects of a vendor’s software engineering processes (e.g. resource man-
agement, strategy determination, roadmap development) routes through the
company perspective. SOK that contributes to processes regarding a vendor’s
existing customers, or contributes to effective response to end-user feedback,
routes through the customer perspective.

2.4 EMPIRICAL EVALUATION

The SOK framework (and therewith the SOK definition) has been empirically
evaluated in two ways. First, to identify the soundness of the framework, a
questionnaire with questions on the SOK definition and framework was pre-
sented to a focus group consisting of chief technology officers and managers
of European software vendors, and several group discussions were held. Sec-
ond, to identify the utility of the SOK framework and evaluate it in practice,
extensive industrial case studies have been carried out at three software ven-
dors that have implemented one ormore SOK life cycle processes. Thematurity
with which such processes were implemented was used as a basis for selecting
organizations.

33

Chapter 2 — A Reference Framework for SOK Utilization

2.4.1 Questionnaire Approach

The questionnaire consists of 21 questions divided over four sections2. The first
section considers subject employment and experience, the size of the vendor
and the vendor’s main software product or service. Next, for each software op-
eration knowledge type described in section 2.2, the focus group participants
were asked whether they considered the knowledge type to be part of software
operation knowledge. Third, the participants were asked if they found any pro-
cesses, perspectives, flows or other elements missing from the framework that
should be added. Finally, in the fourth questionnaire section, participants were
inquired about activities and processes that can be improved by utilization of
(a particular type of) software operation knowledge.

The questionnaire was answered by three CTOs, four product research and
development managers and three lead software architects. All subjects are em-
ployed by different European software vendors, varying in size from 15 tomore
than 2,500 employees (626 employees on average, σ = 1, 065 employees). The
vendors build product or service software that has been available for between
three months and 25 years (12.3 years on average, σ = 8.8 years), and of which
each vendor has released five to twenty major versions. The subjects were re-
cruited by means of an invitation sent to our professional and educational net-
works. All subjects were physically present in one room and answered the
questionnaire questions digitally. In a one-hour presentation, the SOK concept
and framework were introduced to the subjects prior to filling in the question-
naire, in order to assure common understanding among the subjects.

2.4.2 Case Study Approach

Case study techniques described by Yin [Yin 2009] have been used to gather
evidence and determine the state of practice regarding identification, acquisi-
tion, integration, presentation and utilization of software operation knowledge
at each of the participating case study vendors:

Document Study
Software architecture specifications, process descriptions andmemospro-
vided by the vendor were studied to get insight in its SOK life cycle pro-
cesses.

2See appendix A for a list of all questions.

34

Questionnaire Results

Interviews
Fifteen semi-structured interviews have been conductedwith productman-
agers, senior software engineers and software testers employed by the
vendor. Interviewees were asked questions related to SOK identification,
acquisition, integration, presentation and utilization processes and tools
currently implemented at the vendor, and were asked to criticize and
complement the stakeholders, processes and perspectives that constitute
the SOK framework.

Software Study
The software of (andwith) which the vendor acquires operation data was
studied, in order to identify the type and complexity of the software and
to analyze the vendors’ data acquisition techniques.

Direct Observations
Observations were made during our presence at the vendors. For exam-
ple, software development and release management meetings were at-
tended.

Before any evidence was gathered at each of the vendors, an introductory
session was held. During this session, the SOK framework and all related SOK
concepts anddefinitionswere presented tominimize discrepant understanding
and to ensure that case study results could be compared adequately. Document
and software study findings were cross-checked with interview questions and
answers to gain correct and consistent evidence. Additional interviews were
performed to clarify vague answers and to substantiate results (triangulation).
To diminish our personal bias, (1) case study participants were informed about
the goals of the study in advance; (2) each of the case studies was carried out
with researchers present at the vendor site and (3) case study results were re-
viewed by corresponding case study interviewees. The case studydatabasewas
reviewed by other researchers on completeness and consistency afterwards.

2.5 QUESTIONNAIRE RESULTS

Concerning the definition of the SOK concept, eight subjects indicated that
they consider knowledge types κP, κQ, κU as well as κF as part of the concept.
Most subjects considered the SOKdefinition complete in terms of its knowledge
types: only subject [S6] suggested an additional k ∈ κ, κE , representing knowl-
edge of the effectiveness of software in the field. As described in section 2.2, we
consider κE ⊂ κQ, in conformity with the quality-in-use view of the ISO 9126

35

Chapter 2 — A Reference Framework for SOK Utilization

quality model. One subject [S3] considered none of the types k ∈ κ as part of
the SOK concept, and one subject [S10] only found κQ part of the concept.

Regarding the soundness of stakeholders, processes and perspectives that
constitute the framework, subjects [S2, S6, S7, S8, S10] indicated that the SOK
framework should contain external stakeholders, such as ‘external vendors’
that have licensed software from the software vendor or technical partners that
supply software components to the software vendor. As stated in section 2.3,
external stakeholders are represented by the ‘Customer’ stakeholder of the frame-
work. Furthermore, questionnaire participants suggested a number of addi-
tional perspectives. [S4] suggested a ‘Competition perspective’ but noted that
this perspective could also be part of the company perspective. [S9] proposed
a ‘Business perspective’ that encompasses the role of SOK in context of a ven-
dor’s partners and competitors. Regarding a vendor’s partners, we consider
this perspective covered by the company perspective and the customer stake-
holder; the role of SOK in the context of a vendor’s competitors is considered
out of the scope of the SOK framework.

The questionnaire participants were in harmony with respect to their opin-
ion on the five software operation knowledge life cycle processes: no subject
suggested a new process that is not already covered by a processes currently
part of the framework. [S1] noted that it is not essential for operation data to
pass all processes in all situations, and indicated that under certain circum-
stances, processes could be skipped or merged. As stated in section 2.3.2, the
framework processes are descriptive rather than prescriptive and it is possible
to skip or stop a process when it is clear that the goals of a certain improve-
ment have been reached. Lastly, subject [S2] advocated to also include external
systems to measure the availability and response times of those systems. As
detailed in section 2.2, these metrics are part of the SOK definition. External
systems are considered out of the SOK framework scope, however.

With respect to improvement of existing activities and processes by means
of SOK, subjects [S1, S2, S6, S7] mentioned that their software development
processes could be improved by using κP, for example in the process of priori-
tizing bug reports. Subjects [S3] and [S10] indicated that κP could contribute to
improvement of research and development processes. Furthermore, subjects
noted that software development, software maintenance and software testing
processes could be improved by utilization of κQ and κU . [S5] and [S6] men-
tioned that software quality could be increased by using κU , since they con-
sider software quality knowledge to be supportive in the process of pro-active
bug fixing; [S5] added that ‘[without κU ,] software developers may have a very
distorted notion of the concept of software quality’. Software testing was men-

36

Case Study Results

tioned by subjects [S1] and [S5] as a process that can be improved by utilization
of κQ and κU . According to these subjects, SOK potentially contributes to ‘the
design of realistic test scenarios’. Finally, subjects [S5, S6, S10] noted that κF en-
ables ‘to determine which software requirements are important, and which are
not, from a customer’s point of view’, and therefore is contributive to improve-
ment of software product and release management processes.

2.6 CASE STUDY RESULTS

Case study results are presented per case study participant. Since all partici-
pating software vendors conduct software development activities in European
countries, we consider the case study results representative for similar-sized
European software vendors at the minimum; case study results might be gen-
eralizable to vendors operating in non-European countries. We regard the re-
search as repeatable with the same results, presuming similar circumstances
(similar interviewees, similar explanatory sessions, etc.). Note that for reasons
of confidentiality, the names of all case study participants and their software
products and services have been anonymized.

2.6.1 Wareex

Wareex develops business software for small, medium-sized and large enter-
prises. In addition to ERP software, Wareex develops HRM, CRM, project and
workflow solutions. With 2,500 employees and establishments in 40 countries,
the vendor is established on six continents. Wareex was founded in 1984 and
serves customers in 125 different countries. During the case study, two product
managers, three research engineers, two software architects and one customer
support manager were interviewed. All interviewees considered the frame-
work sound; no alternative processes, stakeholders or flows were suggested.
The interviewees could easily project the vendor’s situation in terms of SOK
on the SOK framework. Wareex has implemented processes of the SOK life cy-
cle for several products and services of its software portfolio. First, Lobeex is
an off-line desktop software product that facilitates one integrated back office
implementation for multiple business processes. Concerning Lobeex, Wareex
has rudimentarily implemented a subset of the SOK life cycle processes pre-
sented in section 2.3.2. Wareex’s principle research engineer identified perfor-
mance knowledge (κP) as most relevant and valuable type of SOK: due to the
size and complexity of some back office administrations, a significant part of
Lobeex support calls are related to performance of its software. Wareex built a

37

Chapter 2 — A Reference Framework for SOK Utilization

Figure 2.2 Performance graph of Wareex’s software operation dashboard, showing the
impact of a database version change on Lineex performance

Lobeex operation knowledge acquisition tool that is installed separately from
the Lobeex software. The tool acquires non-sensitive customer data, such as
hardware, memory and operating system details, database statistics as well as
SQL query performance data. Neither the tool nor the data it acquires is in-
tegrated with other tools or processes. The data are presented in ad-hoc gen-
erated performance analysis reports, triggered by requests from the product
manager or the support department. Wareex’s principle research engineer as
well asWareex’s Lobeex product manager indicated that the acquired software
performance data are utilized in software maintenance and customer support
processes, and is used to detect and repair query performance problems and to
optimize database index schemes. Also, Wareex uses Lobeex operation knowl-
edge to propose new hardware or database configuration prospects to its end-
users.

A secondproduct that is part ofWareex’s software portfolio is Lineex. Lineex
is an accounting solution provided as a secure online web application. Regard-
ing Lineex, Wareex has developed specific SOK acquisition and presentation
tools. While SOK identification occurs ad-hoc, triggered by occurrence of con-
crete problems, software operation data are acquired and converted into SOK
automatically. The data are stored by the application’s base layer (on which
all application functionality is based). The acquired operation data are stored

38

Case Study Results

in four logs: an application log (containing software usage and performance
data such as HTTP requests, page view sequences and response times), an er-
ror log (containing software quality data such as unhandled exceptions, query
timeouts and other errors), a help log (containing software feedback data like
end-user help page feedback and appreciation) and a process log (containing
response times and performance statistics of background processes). The data
are not (yet) integrated with external tools, so for example bugs causing unhan-
dled exceptions are still manually entered into Wareex’s bug repository. One
of the Wareex software engineers is entrusted with analysis of all logs. He de-
cides which log entries are relevant and undertakes immediate action when
required. Wareex has developed comprehensive SOK presentation software,
which is used daily by developers, product managers and support assistants to
monitor the load of background processes, look into recent software usage his-
tory and inspect errormessages and corresponding exceptions. Lineex’s SOK is
presented via an online software operation dashboard, which provides detailed
software performance, quality, usage and feedback data: figure 2.2 shows a
graph that visualizes the impact of a transition fromMicrosoft SQL Server 2000
to 2005 on average query duration. Software developers, product managers
and project leaders indicated that Wareex utilizes Lineex operation knowledge
to improve software development, maintenance and release management pro-
cesses.

One product manager noted that ‘the SOK identification process determines
the complexity of the subsequent processes’: the effort needed to acquire, in-
tegrate, present and utilize software operation knowledge is to a large extent
determined by the operation knowledge demands defined in the SOK identifi-
cation process. As described in section 2.3.2, logic defined in the identification
process determines the extent to which data explosion is prevented. Also, an-
other product manager as well as the software architects indicated that a SOK
integration process is not implemented at Wareex: acquired data are directly
presented in logs and reports. They mentioned that at Wareex, SOK is uti-
lized to detect, identify and fix software problems faster and therewith improve
software quality. The support manager indicated that SOKwould be useful for
support assistants to better understand a calling customer and its situation. Re-
garding future SOK developments, a product manager stated that by means of
datamining techniques,Wareex foresees to automatically distinguish customer
profiles and usage trends from acquired SOK.

The research engineers, a software architect and a product manager men-
tioned that it is a goal to continuously determine and quantify the thresholds
that separate ‘bad’ situations from ‘good’ situations regarding the state of soft-

39

Chapter 2 — A Reference Framework for SOK Utilization

ware in the field. This was found particularly relevant in the light of software
scalability issues: the aforementioned interviewees found that changing cir-
cumstances (number of end-users, software updates, hardware environments)
cause new issues which are hard to predict and quantify. The interviewees
found it challenging to objectively acquire and prioritize SOK, and asked ques-
tions such as ‘when is good software good enough?’ and ‘to which extent does
a software vendor contribute to the “badness” of its software?’. One software
architect envisaged self-repairing or self-recovering software, but added that
realization of such software would be difficult since ‘causes of problems and
failures are not always automatically traceable or distinguishable’.

2.6.2 Sionag

Sionag is specialized in development of software for the agricultural sector. The
vendor, founded in 1985, serves thousands of customers in 22 countries with
20,000 licenses in total. The vendor is established in Europe and employs 100
people, of which 20 are software engineers. Two product managers, two senior
software analysts, one software engineer, one database administrator and one
support assistant were interviewed. While no framework elements were re-
jected or new elements were suggested, interviewees noted that the framework
visualizes an ‘ideal situation’ that is not completely representative for the situa-
tion at their organization. ‘Currently, we are acquiring operation data and plan-
ning to implement new data mining techniques’, one product manager stated.
Next, the manager noted that he expected software operation information to be
initially supportive from a development perspective, in terms of time and cost
savings. For example, he expected their softwaremaintenance and releaseman-
agement processes to be improved bymeans of acquired SOK. Themanager ex-
pected acquired software operation information to be secondarily supportive
from a customer perspective (in terms of customer intimacy improvement) and
to be supportive from a company perspective in the long term.

Sionag has started SOK identification and acquisition for one of its software
products, Eropt. Eropt is used to advise animal food compositions. When
an optimal diet is composed at a farm, all nutrition data are synchronized.
Eropt connects with a synchronization web service hosted by Sionag, which
provides access to Sionag’s main nutrition database. Synchronization is real-
ized by means of XML SOAP messages, which Sionag utilizes to acquire SOK:
apart from updated nutrition data, software operation data acquired by Eropt
the last synchronization is sent to Sionag. These data consist of recent us-
age details, customer and agent identification data, exception data (error mes-

40

Case Study Results

sage, stack traces), hardware and system details and Eropt version informa-
tion. While acquired data are not explicitly integrated with other tools or pro-
cesses, Sionag software engineers have developed a tool, Ayopt, to present and
analyze acquired software operation data. With Ayopt, a farm’s synchroniza-
tion and usage history can be analyzed, for example. As recognized by the
software analyst, the data synchronization process is critical to the success of
Eropt, since synchronization errors (concurrency violations caused by deleted
nutrition data, for example) imply loss of crucial data and re-do of two days
of work. The engineer and one software analyst indicated that SOK (κP and κQ

in particular) is utilized to reproduce software failures and quickly find bugs,
therewith speeding up software maintenance processes and increasing the ro-
bustness and usability of the software. Concerning Sionag’s future SOK de-
velopments, one software analyst and one product manager indicated that an
online, service-based version of Eropt will be developed in order to eliminate
the need to explicitly synchronize nutrition data and to be able to apply data
mining techniques to acquired operation data more easily.

2.6.3 Ansta

Ansta is a European software vendor that was founded in 1990. The vendor
develops an industrial drawing application, Adsta, which is targeted on the
MicrosoftWindows platform and is used daily bymore than 4,000 customers in
five countries. Since the start of its development in 1995, four major versions of
the application have been released. Currently, Ansta employs 100 people and is
performing development activities in the Netherlands, Belgium and Romania.

During the case study, the SOK frameworkwas discussedwith Ansta’s CEO,
software developmentmanager andmarketingmanager. In general, the frame-
work was considered sound. However, the marketing manager suggested to
add a block ‘directed marketing’ to the SOK utilization process in the com-
pany perspective. He indicated that acquired SOK, whether or not integrated
with external tools or presented on various media, could be used to direct the
company’s marketing, for example to highlight certain features of the software
that are highly appreciated by a significant part of the vendor’s customer base.
The CEO and managers indicated that successful utilization of SOK could, in
the long term, result in higher quality release plans, increased customer inti-
macy and improved knowledge building of software developers, trainers and
supporters. They also stated that, of all SOK types, they found software usage
knowledge (κU) and software performance knowledge κP to be the most con-
tributive and valuable in the context SOK utilization at Ansta. Furthermore, it

41

Chapter 2 — A Reference Framework for SOK Utilization

Figure 2.3 A graph from Ansta’s SOK presentation tool, Denerr, showing the top 10
crash memory locations based on submitted error reports. 16% of the submissions
report errors on one and the same memory location

was mentioned that in order to successfully utilize SOK, SOK should actually
be analyzed and combined with other data (e.g. mailing conversion statistics,
license data, etc.): the marketing manager expressed that integration of SOK
with the workflows, processes and tools used by employees could significantly
contribute to the effectiveness of SOK utilization.

Like Sionag, Ansta has implemented SOK identification and acquisition pro-
cesses for its drawing application Adsta. Ansta has realized an infrastructure
for assembly and acquirement of software performance and quality knowledge
in the form of error reports. In the case of an unhandled exception, Adsta shows
an error dialog that offers users the option to send an error report to Ansta, and
provides functionality for end-users to determine which information is con-
tained in the report. Potentially, an Adsta error report consists of (1) a crash
log, containing exception details, as well as hardware and software environ-
ment data (processor type, amount of installed memory, operating system ver-
sion, current user, etc.), (2) a crash dump consisting of the recorded state of
Adsta’s working memory at the time it crashed, and (3) a registry file containg
Adsta’s Windows registry settings.

To acquire error reports sent by end-users, Ansta has implemented a web
service to which the reports are submitted. Via this web service, Adsta error
reports are stored in a database. Ansta developed an intranet application called
Denerr (see figure 2.3), by which all error reports are presented to all of the ven-
dor’s employees. Denerr provides functionality to search for and select error
reports that meet certain search criteria (regarding time, contents, source, etc.).
Also, error reports can be downloaded for further analysis.

42

Threats to Validity

Currently, Ansta is implementing tighter integration of acquired SOKwith its
processes and tools. For instance, the vendor is developing a tool that enables
mapping of error report crash dumps to source code files line numbers. By
integrating this tool with its Denerr application, the vendor expects to pinpoint
software failures faster andmore accurately. Also, Ansta plans to increase SOK
utilization by adding report generation functionality to Denner.

2.6.4 Summary

The results of the case studies performed at Wareex, Sionag and Ansta can be
summarized as follows:

(1) Demand:
product software vendors lack a long-term vision regarding SOK utiliza-
tion and are in need of a guiding substrate that aids in establishing that
vision;

(2) Utility:
the SOK framework is considered useful: vendors gained insight bymap-
ping their practices, processes and tools onto the framework; and

(3) State of practice:
while vendors have identified which SOK types they consider valuable
and have implemented SOK acquisition processes by means of specific
software operation logging or monitoring tools, acquired SOK is not (yet)
integrated or utilized with processes and tools already in place. Software
vendors indicate and acknowledge that tight integration of acquired SOK
contributes to mature SOK utilization.

2.7 THREATS TO VALIDITY

The validity of the research results is threatened by several factors. A primary
threat to the validity of the questionnaire results is the number of subjects. Due
to the small number of subjects, (differences between) questionnaire results are
not statistically significant. However, taking into account the role of the subjects
in their organizations as well as the variety in organizations, we consider the
questionnaire results indicative and representative. Of the validity criteria for
empirical research defined by Yin [Yin 2009] and others, the external validity of
our case study research is threatened by the number of case studies carried out.
While we believe that the case study results of the three multinational software
vendors are typical for European vendors of similar size, results might be less

43

Chapter 2 — A Reference Framework for SOK Utilization

applicable to smaller software vendors. Further empirical research is needed to
mitigate these threats. In this research, the selection of case study participants
was pragmatic; we plan to perform case studies at software vendors that are
more mature in terms of SOK utilization in the future.

2.8 CONCLUSIONS AND FUTURE WORK

All too often in software engineering, software and end-user feedback are over-
looked as instruments to guide and advance a software vendor’s activities. In
this paper, software operation knowledge is presented to unify existing def-
initions of knowledge of in-the-field software operation, and a framework is
proposed that is designed to aid software vendors in gaining insight in both
the life cycle of such knowledge, as well as in product software perspectives
from which processes of this life cycle can be perceived. Based on the results
of our empirical evaluation approach, we conclude that the SOK definition is
complete in terms of knowledge types, and the SOK framework is sound and
useful. The framework aids vendors in determining next steps in terms of their
path to effective SOK utilization.

Although software vendors consider SOK valuable, integration with exist-
ing activities and infrastructure is missing. Case study results show that while
software vendors have implemented several processes of the SOK life cycle de-
fined by the framework (i.e., identification, acquisition, integration, presenta-
tion and utilization), acquired SOK is rarely integrated with (tools to support)
vendors’ existing practices and processes. As a result, SOK is used ad hoc and
software engineering processes still advance only modestly as a result of SOK
utilization.

Through the questionnaire answers, we found that of each software opera-
tion knowledge type k ∈ κ, utilization of end-user feedback knowledge (κF) is
expected to contribute to improvement of software engineering processes the
most. Such knowledge can be used to challenge software engineering and SOK
practice assumptions, and to enhance future SOK acquisition, integration and
presentation tools. Future research plans include development and validation
of SOK acquisition tools, such as a tool for generic recording of in-the-field soft-
ware operation. Also, analysis of the (potential) role of SOK integration, pre-
sentation and utilization in software vendor organizations will be subject of
future work.

44

3
On the Role of

Software Operation Knowledge
within Software Ecosystems

ABSTRACT

Knowledge of in-the-field software operation is still unrecognized as an essen-
tial pulse in the veins of software ecosystems. Although software-producing
organizations are aware of the ecosystems in which they operate and their re-
lationships with other ecosystem participants, all too often, vendors are unsuc-
cessful in recognizing the potential value and role of such knowledge in their
software ecosystems. This paper presents a classification of successful opera-
tional software ecosystem practices that may help software-producing organi-
zations to effectively utilize and propagate knowledge of the in-the-field opera-
tion of their software, and therewith address challenges that result from ecosys-
tem participation. Analysis of these practices confirms that infrastructures for
acquisition, utilization and propagation of such knowledge, allow ecosystem
participants to use the ‘power of many’ in increasing the quality and robust-
ness of their software, and provide them with competitive advantage in terms
of software quality, end-user satisfaction, ecosystem stability and ecosystem at-
tractiveness.∗

∗This work has been published as The Power of Propagation: On the Role of Software Operation
Knowledge within Software Ecosystems in the proceedings of the International Conference onManage-
ment of Emergent Digital EcoSystems (MEDES 2011) [Van der Schuur et al. 2011d]. It is co-authored
by Slinger Jansen and Sjaak Brinkkemper.

45

Chapter 3 — On the Role of SOK within Software Ecosystems

3.1 INTRODUCTION

Software vendors have become networked organizations that are dependent on
other software vendors for libraries, components or platforms vital to the cor-
rect operation of their software. Due to rapidly changing technology and end-
user demands, software vendors have resorted to virtual integration through
alliances in or between the software ecosystems in which they operate. While
many software vendors thrive and advance because of their participation in
software ecosystems, these vendors are simultaneously confrontedwith several
challenges resulting from software ecosystem participation, such as software
ecosystem relationship management, ecosystem orchestration strategy devel-
opment, and ecosystem composition comprehension [Farbey and Finkelstein
1999, Bosch 2009, Van Angeren et al. 2011]. Part of the value that is created in
software ecosystems is software operation knowledge (SOK): ‘Knowledge of
in-the-field performance, quality and usage of software, and knowledge of in-
the-field end-user software experience feedback’ [Van der Schuur et al. 2010].
Vendors use SOK, for instance, to gain insight in the in-the-field behavior of
(end-users on) their software, increase software quality by mitigating issues
that may surface only after deployment (e.g. compatibility issues, performance
problems, etc.) and improve software processes like software maintenance,
software product management and customer support [Van der Schuur et al.
2010].

In this paper, we state that SOK forms an essential pulse in the veins of soft-
ware ecosystems, and serves as a primary enabler for software vendors to thrive
and flourish in the ecosystems in which they operate. Software vendors can
successfully participate in software ecosystems by addressing challenges re-
sulting from this participation through effective utilization1 of acquired soft-
ware operation knowledge, as well as through propagation of such knowledge
to other ecosystem participants. To substantiate our position, we report on
the operational SOK propagation practices of four software-producing orga-
nizations, and show how these organizations have mitigated aforementioned
challenges through SOK propagation. Analysis of these practices shows that
through effective utilization and propagation of SOK, software quality is in-
creased, relations between vendors are strengthened, and insight into software
ecosystem composition is deepened.

This paper continues as follows. In the next section, we elaborate on the con-
cept of SOK propagation. First, we identify two main software ecosystem par-

1In this paper, we define ‘utilization’ of software operation knowledge as the use of such knowl-
edge to support or improve processes, practices or products.

46

SOK Propagation within Software Ecosystems

SECO Scope Level SOK Propagation Illustration
Software Ecosystem Changes to the keystone platform (e.g. in-the-field API behavior)

are propagated to all ecosystem participants
Actor Knowledge of keystone software instability, caused by niche

player software, is propagated to that particular niche player

Table 3.1 SOK propagation illustrated for two SECO scope levels

ticipant roles and describe SOK propagation characteristics per role. Second,
we describe challenges that result from software ecosystem participation, and
illustrate how these challenges can be addressed through SOK propagation.
Section 3.4 presents the identified operational SOK propagation practices of
four software-producing organizations (the identification approach is detailed
in section 3.3); analysis of those practices is provided in section 3.5. Finally,
conclusions are presented in section 3.6.

3.2 SOK PROPAGATION WITHIN SOFTWARE ECOSYSTEMS

Several different definitions of the term software ecosystem (SECO) exist [Messer-
schmitt and Szyperski 2003, Bosch andBosch-Sijtsema 2010, Kittlaus andClough
2009]. In this paper, we use the following definition of a SECO: ‘A set of ac-
tors functioning as a unit and interacting with a shared market for software
and services, together with the relationships among them’ [Jansen et al. 2009].
Relationships between SECO actors are frequently underpinned by a common
technological platform or market, and operate through exchange of informa-
tion, resources or artifacts [Jansen et al. 2009, Bosch and Bosch-Sijtsema 2010].
Participation of actors in software ecosystems can be observed from various
points of view. In this paper, we scope participation of software vendors in
software ecosystems from two scope levels, both levels corresponding to cer-
tain ‘objects of study’ [Jansen et al. 2009]: software ecosystems as a whole, and
software ecosystem actors itself (see table 3.1). Companies participating in a
software ecosystem (i.e., interacting with a shared market for software and ser-
vices) can have different roles. Although more roles are identified, the roles of
keystone (i.e. orchestrator, shaper) and niche player (i.e. follower) are recurring
in literature, e.g. [Jansen et al. 2009, Häcki and Lighton 2001].

Keystone
An actor providing a standards or technology platform that forms a foun-
dation for the keystone’s ecosystem. The platform defines standards and

47

Chapter 3 — On the Role of SOK within Software Ecosystems

practices, provides leverage and increases in value and attractivenesswith
the number of actors. Keystones create and share value (i.e. assets, incen-
tives) within their software ecosystems [Iansiti and Levien 2004a], and
aim to improve their ecosystems’ quality, stability and productivity by
(1) encouraging specialization (i.e. niche creation), (2) cultivating deep
understanding of processes and practices and (3) developing and man-
aging feedback loops [Iansiti and Levien 2004b, Brown et al. 2002, Gawer
and Cusumano 2002].

Niche player
An actor that requires a standard or technology platform provided by
a keystone to create business value [Jansen et al. 2009]. A niche player
operates in a niche market and prospers through value or knowledge
generated by the keystone, other actors or the software ecosystem as a
whole [Häcki and Lighton 2001, Brown et al. 2002]. Niche players are in-
vited to participate in software ecosystems by the ecosystems’ keystones
(for instance by receiving a development program qualification or soft-
ware compatibility certification, or by having (unrestricted) access to key-
stone resources), and therewith may become keystone partners on the
long term.

Based on operation knowledge demands, software vendors obtain software
operation knowledge and operation information from software operation data
(as demonstrated in [Van der Schuur et al. 2010, Van der Schuur et al. 2008,
Van der Schuur et al. 2011b]). Figure 3.1 conceptually visualizes SOK utiliza-
tion and propagation in software ecosystems. On the actor level, actors (e.g.
keystones, niche players) derive software operation knowledge from (behav-
ior of end-users on) software operating in the field and utilize such knowledge
within their organizations. On the software ecosystem level, such software op-
eration knowledge is propagated to other actors in the same ecosystem. After
application of datamining techniques and data abstraction logic, both based on
operation knowledge demands, operation information is obtained. This infor-
mation serves as input for support and improvement of an actor’s the products
or processes. Interpretation and integration of operation information results in
software operation knowledge, which is utilized iteratively and continuously to
improve an actor’s products and processes.

SOK utilization can serve various goals and can thus be viewed from var-
ious perspectives, such as a development, company and customer perspec-
tive [Van der Schuur et al. 2010]. As a result of their utilization of software
operation knowledge, software ecosystem participantsmay respond by (1) con-

48

SOK Propagation within Software Ecosystems

Actor

Actor

Actor

operation knowledge propagation

Actor

Information
Extraction

operation information

operation
response

Data Extraction

operation knowledge
demands

End-user
Software
Operation

behavior

Perspective

Software
process

operation data
Ac

to
r L

ev
el

Actor

Actor

So
ftw

ar
e

Ec
os

ys
te

m
 L

ev
el

Legend
SECO boundary

SOK propagation

SOK utilization

Figure 3.1 SOK utilization and propagation in software ecosystems

tacting customers and releasing software patches or updates to eliminate or
thoroughly investigate software failures, (2) defining new (or altering existing)
operation knowledge demands for more generic or specific operation data ac-
quisition, and (3) propagating (utilized) software operation knowledge to other
ecosystem participants, for example to notify partners of unstable or failing op-
eration situations, or provide additional operation environment details to en-
courage bug elimination and software quality improvement. As detailed in the
next section, an ecosystem participant may utilize SOK propagated by other
ecosystem participants in addition to SOK it obtains from in-the-field opera-
tion of its ‘own’ software.

49

Chapter 3 — On the Role of SOK within Software Ecosystems

3.2.1 Propagation Characteristics

Propagation of software operation knowledge within software ecosystems en-
compasses both scope levels in table 3.1. Although software operation knowl-
edge is propagated by one actor to one or more other actors, the process of
propagation itself can be observed from both scope levels: actors as well as
software ecosystems as a whole may be influenced by, or accountable for, SOK
propagation. SOK propagation characteristics and goals may differ per actor
role, however.

Keystone characteristics
In terms of SOK propagation, keystones set about establishing a plat-
form for publication and propagation of acquired SOK (e.g. error reports,
performance measures, etc.) to niche players in their software ecosys-
tem [Häcki and Lighton 2001]. Keystones orchestrate which niche play-
ers have access to the platform and to which niche players knowledge of
keystone software operation is propagated. Keystones are able to propa-
gate SOK through their ecosystem at different levels of granularity, cor-
responding to the scope levels in table 3.1.

Keystones strive for reinforcement and growth of their software ecosys-
tem. Software operation knowledge can be used to do so. For example,
effective propagation of, and response to SOK acquired during operation
of a new set of platform APIs can increase the performance and quality
of these APIs rapidly, and therewith accelerate their adoption. External
actors, potentially participating in rival ecosystems, may be attracted by
the stability, feature-richness and ‘partner intimacy’ of the keystone and
its platform.

With over 425,000 software applications, downloaded more than 15 bil-
lion times in total in less than 3 years, Apple’s AppStore is recognized
as the platform that thrives the iPhone software ecosystem. In the first
months after the launch of the store, Apple prohibited public discus-
sion about APIs, documentation and sample code. Particularly during
thesemonths, incorrect usage of (unofficial) iPhone SDKAPIs led tomany
application crashes (for instance after installation of an operating sys-
tem upgrade) and much frustration of niche players participating in Ap-
ple’s iPhone ecosystem. Compatibility and stability issues caused by er-
roneous API use could have been prevented through SOK analysis and
propagation.

50

SOK Propagation within Software Ecosystems

Niche player characteristics
On the short term, niche players strive to create business value through
the platform provided by the keystone. For instance, niche players cre-
ate such value by (1) developing niche software products, (2) realizing
efficiencies resulting from the sharing of assets and knowledge by other
ecosystem participants, and (3) obtaining access to the keystone’s cus-
tomers [Häcki and Lighton 2001]. Adequate response to SOK received
from keystones, as well as frequent informing of keystones on end-user
feedback knowledge (end-user experiences, wishes, etc.) may be rewarded
by a keystone with ‘niche player partner’ qualification (which provides
access to a keystone’s customer data, for example). While close and trust-
ful relationships and communication with the keystone and other niche
players may be advantageous, niche players are prudent and attempt to
prevent overdone response (e.g. by sharing specialized knowledge or in-
tellectual property). Niche players seek a SOK propagation response bal-
ance: too comprehensive response may reduce a niche player’s compet-
itive or knowledgeable advantage, too limited response might not result
in quality and robust software and consequent overdue response may re-
sult in exclusion from the ecosystem or forfeiture of partnership, which
diminishes a niche player’s chances to become a keystone itself. Nonethe-
less, to transform into a keystone actor, niche players can merge forces or
gradually adopt keystone skills.

At present, certified niche players participating in theMicrosoftWindows
ecosystem receive SOK propagated byMicrosoft via itsWindows Quality
Online Services (Winqual) [WinQual, Glerum et al. 2009]. Niche play-
ers can link software operation failures to solutions, which allows di-
rected distribution of software updates and corresponding support web
pages to customers. Furthermore, Microsoft propagates knowledge of
end-user satisfaction, and software usability and appreciation to niche
players through its program for customer experience improvement [CEIP].

3.2.2 Addressing SECO Challenges through SOK Propagation

Software vendors participating in software ecosystems are facedwith new chal-
lenges on each software ecosystem scope level [Jansen et al. 2009, Farbey and
Finkelstein 1999, Bosch 2009]. Below, we describe how we envision particu-
lar challenges to be addressed through effective utilization and propagation of
SOK.

51

Chapter 3 — On the Role of SOK within Software Ecosystems

SECO relationship management
Evaluation of propagated SOK results in intensification, prolongation or
diminishing of relations between software ecosystem participants and
their suppliers, buyers and end-users. For example, a keystone may de-
cide to promote a niche player to a (certified) partner when the niche
player responds adequately to propagated SOK and its software is ro-
bust and of high quality. New relationships are established, for instance,
if SOK evaluation shows that a particular niche player’s software does not
meet quality level agreements and a keystone decides to replace the niche
player by a new vendor, or if the keystone platform is to be extendedwith
novel standards or techniques developed by vendors not participating in
the keystone’s ecosystem.

SECO composition comprehension
When SOK is continuously and forthrightly propagated through a soft-
ware ecosystem, participants gain insight in the structure of and knowl-
edge flows within their ecosystem. As an example, a keystone actor may
obtain a comprehensive view of the most-used software add-ons that are
operating on top of its extension architecture. Niche players get insight
in which ecosystem participants are propagating the greatest amount of
SOK.

Software quality management
As stated earlier, acquired SOK is used as a basis formonitoring andman-
aging quality of software operation. Also, keystones define quality levels
and analyze SOK to determine a niche player’s software add-on quality
level and optionally propagate SOK to increase add-on compatibility or
operation quality. Niche players attempt to acquire certified partnerships
by acquiring, monitoring and propagating SOK themselves, as well as by
continuously responding adequate to received SOK.

Portfolio and product line planning
Ecosystem participants are supported by acquired or received SOK in de-
cidingwhich new or refined functionality is included inwhich future ver-
sions of their software. SOK analysis may unveil which features are used
often, appreciated or wanted most, or cause crashes at the majority of
end-users in the field, by which, for instance, release planning activities
are supported.

52

Practice Identification Approach

SECO orchestration strategy and policy development
Keystones utilize SOK for developing or perfecting their SECO orches-
tration strategies and policies, to increase attractiveness of their ecosys-
tem. For example, if many software applications based on the keystone’s
platform are crashing, SOK analysis can be performed to identify most-
occurring software failures. Next, based on SOK analysis results, a key-
stone can (re)define quality level agreements and compatibility certifica-
tions to increase the platform’s robustness, and therewith increase the
attractiveness of the ecosystem compared to rival ecosystems.

3.3 PRACTICE IDENTIF ICATION APPROACH

To investigate the role of SOK in software ecosystems and to empirically eval-
uate how and to which extent product software vendors have addressed the
challenges described in section 3.2.2, we conducted extensive semi-structured
interviews with in total seven employees of four software-producing organiza-
tions that are participating in one or more software ecosystems (see table 3.2).
The interviews consisted of 41 questions that were formulated after literature
study, divided over five sections2. Interview sessions took 1.5 hour on average
and were conducted on-site, or via conference calling, over a total period of 35
days. Organizations were contacted from industrial networks. Basis for con-
tacting organizations for interviews was the extent to which an organization
utilizes SOK, and propagates SOK within the software ecosystems it operates
in.

Interview answers were recorded and used to determine to which extent,
and, if applicable, how organizations addressed ecosystem challenges through
utilization and propagation of SOK. Having clustered the organizations per
challenge they addressed, we subsequently derived aspects that are common
to these organizations, and could be generalizable to similar organizations that
have addressed the same challenge. Derivation of these aspects (i.e. Key deriva-
tions) was conducted from the perspective of our position stated in this paper.
Key derivations were found during inductive and deductive iterations of inter-
view answers study. The key derivations form the basis for the classification of
orchestration and propagation SOK practices in section 3.5. As the future in-
tensions in section 3.4.6 are not yet operational, we deliberately omitted those
from the classification.

2All questions are available at http://people.cs.uu.nl/schuurhw/sokpropagation

53

Chapter 3 — On the Role of SOK within Software Ecosystems

O
SC

om
p

N
etC

om
p

ER
PC

om
p

C
A
D
IntC

om
p

SEC
O

platform
O
S-,offi

ce-and
developm

entplatform
s

N
et

ERPO
ffl
ine,ERPO

nline
C
adInt

Platform
technology

.N
ET

Various
.N

ET
.N

ET
SO

K
propagation

infrastructure
Q
uality

service,
errorreporting

N
ethardw

are
O
SC

om
p
Q
uality

service
Errorreporting,
m
em

berportal
SEC

O
participation

incentive
Logo

program
Partneralliance
program

D
eveloperkey

C
onsortium

m
em

bership
N
um

berofem
ployees

80,000
67,000

2,100
25 a

N
um

ber
of

interview
ees

(role;
avg.years

ofIT
em

ploym
ent)

1(principalresearcher;28)
1(C

IO
Europe;23)

3
(technology

research
director,

productline
m
anager,principal

research
engineer;15)

2
(developm

entdirector,
quality

assurance
m
anager;24.5)

aExcluding
em

ployeesofconsortium
m
em

bers

Table
3.2

SECO
characteristicsofthe

foursoftw
are-producing

organizationsresearched

54

Identified SOK Propagation Practices

3.4 IDENTIF IED SOK PROPAGATION PRACTICES

After having introduced the four vendors, we describe for each challenge pre-
sented in section 3.2.2 how twoormore vendors address these challenges through
SOK utilization and propagation. Note that for reasons of objective compara-
bility, company names as well as names of software products and techniques
have been anonymized.

OSComp
OSComp currently employs 80,000 people of which one-third is perform-
ing software engineering activities. The ecosystems around OSComp’s
operating system, office and software development products are only a
few examples of ecosystems in which OSComp fulfills a keystone role.
Also, the company is a niche player actor in Apple Mac OS X and iPhone
software ecosystems. OSCompprovides technologies to enable niche play-
ers to develop desktop applications, web applications and extensions.
The company acquires knowledge of its in-the-field software operation
by means of its Error Reporting (ER) technology, for acquisition of crash
and failure data (excluding operation environment data), and the Anal-
ysis Component (AC) technology for collecting software operation data
(including operation environment data) of particular customers.

NetComp
NetComp currently employs 67,000 people, of which one-third are soft-
ware engineers developing communication, collaboration and operating
system software at 24 locations world-wide. The company is the keystone
in the software ecosystem around its Net software that is running on the
vast majority of NetComp’s hardware. Niche players in this ecosystem
are partners of NetComp, and contribute to new releases of the Net soft-
ware. With keystones as Nokia and OSComp, NetComp considers itself
a niche player in the ecosystem of collaboration and conferencing soft-
ware: the company develops plugins for end device software platforms
to enable collaboration and conferencing on the corresponding devices.
Knowledge of operation of NetComp software on idem hardware is ac-
quired by NetComp only with accordance of its customers.

ERPComp
ERPComp is a global ERP software vendor with 2,100 employees (250
software engineers) that fulfills different roles in several ecosystems. Its
main product portfolio consists of an offline desktop application, ERP-
Comp ERPOffline, and an online, service-based web application called

55

Chapter 3 — On the Role of SOK within Software Ecosystems

ERPComp ERPOnline. With both applications based on OSComp tech-
nology, ERPComp is in the top 50–100 of OSComp’s global independent
software vendors team and is therefore a partner niche player in OSComp
ecosystems. ERPComp participates as a keystone in its dealer and part-
ner networks: the vendor has initiated technology platforms with SDKs
or only APIs to enable dealers to develop niche add-ons for its ERPOf-
fline product, or to allow tighter integration and collaboration between
its ERPOnline product and niche players like banks or governmental tax
institutes.

CADIntComp
CADIntComp is an organization that develops a Computer AidedDesign
(CAD) platform, and is owned and governed by itsmembers. Members of
CADIntComp integrate the main technology of this platform, CADInt, in
their own software products and customize it to serve niche engineering
markets. In turn, CADIntComp uses .NET technology to build CADInt.
TheCADIntComp consortiumconsists of about 50members from38 coun-
tries, mostly software vendors, which form the niche players in the soft-
ware ecosystem of which CADIntComp is the keystone. Niche players in
the CADInt ecosystem may be keystones in other software ecosystems.
For example, one of CADIntComp members integrates the CADInt tech-
nology in its CAD product software for building industry. Simultane-
ously, the vendor has built a platform for manufacturers of engineering
materials to provide and publish CAD software drawing symbols that are
used in its software for drawing these materials. Two types of niche play-
ers participate in the CADInt ecosystem: commercial members (which
have full source code access and may contribute to the platform) and API
members (which only have access to APIs).

3.4.1 SECO Relationship Management

OSComp
Niche players can enter most of OSComp’s software ecosystems by pro-
ducing software for the corresponding platforms. The company attempts
to intensify relationships with niche players by stimulating them to be-
come (certified) partners through certification and compatibility programs.
For example, by means of the Quality service that is part of OSComp’s
Logo Program, the vendor verifies compatible operation of hardware and
software of certified niche players with most recent versions of its own

56

Identified SOK Propagation Practices

software (e.g., the operating system software). Also, the company propa-
gates knowledge of software operation failures to niche players certified
for program participation.

NetComp
Companies are allowed to participate in NetComp’s ecosystems through
the NetComp partner program, where the volume of the potential niche
player as well as partnership capacity available at NetComp determine
wether or not a niche player is recognized as an official partner. Knowl-
edge of in-the-field operation of niche player software is used by Net-
Comp to promote or acquire niche players. Also, relationships with niche
players are diminished or discontinued when acquired software opera-
tion data indicates defective niche player software. Strategic alliances are
formed with corporations like IBM and AT&T, players with which Net-
Comp interchanges engineers and to which NetComp discloses virtually
all of its intellectual property.

ERPComp
Niche players are invited to ERPComp’s ecosystems by obtaining an SDK
license (which, for instance, allows developers to add new functionality
and extend data models) or registering for an API developer key (which
enables developers only to import data from and export data to the ERP-
Comp software). ERPComp stimulates its niche players to develop soft-
ware for distinct niche markets, or to collaborate with other niche players
by developing a joint add-on (for instance when too many players are de-
veloping equivalent add-ons for one and the same niche market).

KEY DERIVATIONS Keystones provide different incentives for stimulating
niche players to participate in their software ecosystem, and therewith initiate
SOK acquisition from niche player software. Selection of incentives is based
on the role and behavior of niche players as well as on the keystone’s capacity
and resources available for supporting the niche player. Keystones attempt to
initiate niche player relationships via developer keys, after which relations are
strengthened through certification programs and (private) SDK access. SOK re-
sulting from monitoring and verification of software operation compatibility is used
as input for relationshipmanagement. Ultimately, keystonesmerge niche player
partnerships or form strategic alliances with niche players.

57

Chapter 3 — On the Role of SOK within Software Ecosystems

3.4.2 SECO Composition Comprehension

OSComp
According to OSComp, software ecosystems compositions are continu-
ously changing. Therefore, effective SOK acquisition is practically the
only way for the vendor to gain andmaintain insight in the ecosystems in
which it is operating. For example, if a niche player joins the OS ecosys-
tem and releases a new hardware driver, OSComp can be aware of it in a
matter of days. Also, received SOK provides OSCompwith insight in the
actual distribution of (particular versions of) its software over its software
ecosystems.

NetComp
NetComp is legally obliged to register what are the physical operation lo-
cations of its network products, so that it can prove that its hardware is not
placed illegally at certain locations or in particular countries. In addition
to knowledge of how Net is operating in the field (e.g. hardware uptime,
number of unexpected shutdowns, request/response failure rates, etc.),
knowledge of where Net hardware is currently operating, is part of Net
operation knowledge. Hence, SOK is vital to NedComp for monitoring
the geographical location of its hardware, and therewith to NetComp’s
comprehension of its Net ecosystem.

KEY DERIVATIONS Keystones utilize SOK to gain and maintain insight in
their ecosystems’ compositions. SOK is not only used to monitor ecosystem en-
trance and exit of niche players and their software, but also to keep track of the phys-
ical location of the hardware on which the software is operating. Vendors may
be (legally, or otherwise) constrained to register such ecosystem composition
information.

3.4.3 Software Quality Management

OSComp
OSComp’s ER service has helped to improve the quality of many niche
player device drivers, which caused a majority of its OS crashes in the
past, and alleviated the demanding challenge of isolating obscureHeisen-
bugs (bugs that disappear or alter when an attempt is made to study
it) [Gray 1986]. According to OSComp, it is impossible to extensively test
all unique devices, let alone unique device configurations. As an attempt
to nonetheless maintain and manage the quality of its software, the com-

58

Identified SOK Propagation Practices

pany uses its ER service for error report diagnosis, statistics-based debug-
ging and automatic direction of end-users to solutions of corrected soft-
ware operation failures. Since 2009, more than 700 ecosystemparticipants
with roughly 7000 applications were using the ER technology, of which
175 participated with registering almost 1500 solutions to hardware- or
software operation failures.

NetComp
Knowledge of in-the-field Net operation is used to improve the quality of
NetComp’s software. When operation data indicate software failures, re-
gression analysts are asked to determine the ‘real’, underlying cause of the
failure bymining acquired operation data, afterwhich the bug that causes
the failure is solved and the hardware involved is remotely updated with
the most recent version of the software. With respect to software quality
management, NetComp’s goal is to be the first to identify and address
failures of its software.

ERPComp
ERPComp has certified its ERPOffline product for OSComp’s Logo Pro-
gram, and SOKoriginating from in-the-field ERPOffline operation is prop-
agated to ERPComp by means of OSComp’s Quality service. Since error
reports created with this service provide ERPComp insufficient data to
identify the exact cause of software failure, ERPComp has developed an
analysis tool that end-users can download to determine the exact problem
source. When ERPOffline operation failure is caused by a niche player
add-on, the niche player is contacted by ERPComp to ensure the issue is
solved adequately. Concerning operation of ERPOnline, ERPComp ac-
quires and monitors performance, quality, usage and feedback data dur-
ing operation of the ERPOnline web application to quickly respond to
performance issues and answer usage trend questions (e.g. regarding In-
ternet Explorer 6 usage). The vendor is able to identify niche players re-
sponsible formalformedAPI requests or responses, by filtering operation
data on the corresponding developer key. ERPComp propagates SOK to
partner niche players, for instance to evaluate and improve operation and
compatibility of couplings between its ERPOnline application and part-
ner services.

CADIntComp
Within CADIntComp’s CADInt ecosystem, SOK propagation contributes
to improvement of software quality and reproduction of rare bugs. CAD-

59

Chapter 3 — On the Role of SOK within Software Ecosystems

IntComp has built a member portal which is vital to the propagation of
CADInt operation knowledge through its ecosystem. Apart frompatches,
language translations and feature requests, members submit crash logs
containing a mini memory dump, call stack as well as other software op-
eration environment details to the portal. Crash logs are mined and ana-
lyzed, afterwhichCADIntCompquality assurance employees are notified
if critical information has been submitted.

KEY DERIVATIONS Vendors use SOK to manage quality of all kinds of soft-
ware. It is clear that adequate SOK propagation is considered particularly ad-
vantageous in determining the root cause of in-the-field software failures that do not
occur at the software vendor site, or in isolating Heisenbugs [Gray 1986]. The
more vendors are able to acquire and effectively utilize knowledge of software
operation, the more these vendors are successful in managing quality of their
software.

3.4.4 Portfolio and Product Line Planning

OSComp
Within OSComp, SOK is used in every phase of the software life cycle.
Roadmaps of new software products are based on the usage and quality
of the most recently released software product as well as SOK acquired
from the last product. For example, a new user interface introduced by
OSComp in its office software is largely based on SOK (particularly, soft-
ware usage data) that is acquired during operation of earlier versions of
the software. Also, SOK is used to determine the schedule and composi-
tion of new software releases: inter alia crash data and end-user feedback
are used to determine the impact of particular in-the-field software oper-
ation failures, and therewith decide on the priority of including a fix to
these failures in a next release of the software.

NetComp
Operation knowledge of NetComp software operating on set-top boxes in
the field is acquired tomeasure feature adoption and therewith determine
cost-effectiveness of the boxes. In other words, if operation data analysis
indicates that certain features of the set-top box software are rarely used
by end-users, NetComp considers the software to offer too much (or too
specific) functionality. The company then attempts to build a new version
of the box operated by the same software minus the rarely-used features,
for a lower price.

60

Identified SOK Propagation Practices

ERPComp
While ERPComp mainly uses acquired or received SOK in release man-
agement and product line planning processes to decide which software
mutations (updates with bug fixes or new functionality) affect most cus-
tomers positively, the vendor foresees SOK to be increasingly used in opti-
mization of internal business processes. Based on SOK analysis, the ven-
dor witnessed a significant change in its average end-user’s work-life bal-
ance. ERPComp could use this (location-dependent) knowledge not only
as input for portfolio planning processes, but also for staffing its support
departments, for example.

CADIntComp
According to CADIntComp, propagation of SOK through their CADInt
ecosystem supports realistic planning of new (versions of) CADInt re-
leases: if crash logmining indicatesweak areas inCADInt software, CAD-
IntComp focuses on strengthening these areas when determining speci-
fications for the upcoming release. Code repositories, build- and test re-
sults, roadmaps and design specifications aswell as information resulting
from crash logmining in the form of operation reports, allowmembers to
get insight in build status, development progress and trends concerning
in-the-field software operation quality and performance.

KEY DERIVATIONS SOKpropagated to software ecosystem keystones is uti-
lized by these participants to determine the composition of new versions of
their software, and to schedule release of these versions. In the long term, soft-
ware vendors use received SOK to optimize the cost-effectiveness of their software
products by aligning product functionality with actual feature adoption, as well
as internal business processes (e.g. support department staffing).

3.4.5 SECO Orchestration Strategy and Policy Development

OSComp
Apart from software quality, OSComp uses its Quality service to monitor
the satisfaction of its partners as well as the satisfaction of its partners’
end customers. This allows the company to recognize and orchestrate
areas of improvement across an ecosystem. If such areas are identified,
OSComp assists involved niche players in realizing improvement of soft-
ware quality or partner satisfaction, and therewith increase stability and
attractiveness of its ecosystems. In addition, OSComp uses its certifica-
tion programs as a way to control the level of collaboration with niche

61

Chapter 3 — On the Role of SOK within Software Ecosystems

players. If a particular participant appears to distort ecosystem stability,
OSComp can diminish the player’s ecosystem participation, for example
by limiting its platform privileges.

NetComp
One of NetComp’s strategies to orchestrate its software ecosystems is to
adapt its partner alliance program specifically to the needs of particular
partners. Based on a partner’s software operation data history, NetComp
creates partner-specific incentives and policies. Also, the company in-
volves partners of certain alliances in upscaling the operation speed and
scale of its ecosystem. By prospecting potential access to its intellectual
property to partners, NetComp stimulates partners to build robust soft-
ware and behave well in its ecosystems.

KEY DERIVATIONS The way SOK is used by keystones to orchestrate their
software ecosystem is influenced by the trust between these partners. With
a relative lack of trust, keystones concentrate their incentives on niche player
participation. With trustful relationships, keystones adapt their incentives and
policies per partner, to maximize each partner’s contribution to ecosystem stability
and attractiveness.

3.4.6 Future Intentions

OSComp
According to OSComp, one of the biggest challenges in software develop-
ment is to understand the actual intent of end-users during software oper-
ation. While software crashes that are a direct result of an end-user action
obviously are considered as unwanted behavior, it is often unclear what
was an end-user’s actual intent when a window, waiting for response,
was closed. Also, the company expects software development processes
to further evolve around the question ‘What is the end-user doing?’. To an
increasing extent, operation failures are no longer constrained to one ma-
chine, one piece of software or one software vendor. End-users increas-
ingly interpret operation failures as a failure of the ‘total thing’, i.e., the
computing experience as a whole. One of OSComp’s future challenges
is to get a more thorough insight in the cause and frequency of software
that is not fulfilling end-user expectations, based on SOK that is acquired
by or propagated to partners participating in its software ecosystems.

62

Identified SOK Propagation Practices

SE
C
O

Li
fe

C
yc
le

Ph
as
e

C
re
at
io
n

C
on

tin
ua

tio
n

SE
C
O

O
rc
he

st
ra
tio

n
Fo

cu
s

A
ct
or

Le
ve

l
Tr
us

tb
ui
ld
in
g
(3
.4
.1
)

•
C
er
tifi

ca
tio

n
pr
og

ra
m
s

•
D
ev
el
op

er
ke

ys

Tr
us

ts
tr
en

gt
he

ni
ng

(3
.4
.5
)

•
A
dv

an
ce
d
ce
rt
ifi
ca
tio

n
pr
og

ra
m
s

•
Pr
iv
at
e
SD

K
ac
ce
ss

Ec
os

ys
te
m

Le
ve

l
N
ic
he

pl
ay
er

pa
rt
ic
ip
at
io
n
(3
.4
.1
)

•
G
en

er
ic
pa

rt
ic
ip
at
io
n
in
ce
nt
iv
es

•
N
ic
he

te
am

s

Pa
rt
ne

rc
on

tr
ib
ut
io
n
(3
.4
.5
)

•
Pa

rt
ne

r-
sp

ec
ifi
c
in
ce
nt
iv
es

•
Pa

rt
ne

rt
ea
m
s

SO
K

Pr
op

ag
at
io
n

Fo
cu

s

A
ct
or

Le
ve

l
So

ftw
ar
e
qu

al
ity

m
an

ag
em

en
t(
3.
4.
3)

•
O
pe

ra
tio

n
fa
ilu

re
ca
us

e
id
en

tifi
ca
tio

n
•

H
ei
se
nb

ug
is
ol
at
io
n

Po
rt
fo
lio

an
d
pr
od

uc
tl
in
e
pl
an

ni
ng

(3
.4
.4
)

•
Re

le
as
e
co
m
po

si
tio

n
an

d
sc
he

du
lin

g
•

C
os
t-e

ffe
ct
iv
en

es
so

pt
im

iz
at
io
n

Ec
os

ys
te
m

Le
ve

l
Re

la
tio

ns
hi
p
m
an

ag
em

en
t(
3.
4.
1)

•
So

ftw
ar
e
op

er
at
io
n
m
on

ito
rin

g
•

So
ftw

ar
e
co
m
pa

tib
ili
ty

ve
rifi

ca
tio

n

Ec
os
ys
te
m

co
m
po

si
tio

n
co
m
pr
eh

en
si
on

(3
.4
.2
)

•
N
ic
he

pl
ay
er

en
tr
an

ce
an

d
ex
it
m
on

ito
rin

g
•

H
ar
dw

ar
e
lo
ca
tio

n
tr
ac
ki
ng

Ta
bl
e
3.
3

C
la
ss
ifi
ca
tio

n
of

id
en

tifi
ed

or
ch

es
tr
at
io
n
an

d
pr
op

ag
at
io
n
pr
ac
tic

es
.N

um
be

rs
be

tw
ee
n
pa

re
nt
he

se
sr

ef
er

to
th
e
re
sp

ec
tiv

e
se
ct
io
ns

pr
es
en

tin
g
th
e
co
rr
es
po

nd
in
g
in
te
rv
ie
w

re
su

lts

63

Chapter 3 — On the Role of SOK within Software Ecosystems

NetComp
For NetComp, challenges lie in responding adequately to acquired or re-
ceived software operation knowledge. The relatively uncomplicated soft-
ware operating on set-top boxes is automatically updated when, based
on software operation data, a bug in the software has been identified and
fixed. Simultaneously, operation data acquired fromNetComp’sNet soft-
ware running on mission-critical instances of its most advanced enter-
prise hardware, require highly sophisticated response to administrators
of the hardware. Therefore, NetComp is investigating ways to not only
use the ‘power of many’ in terms of SOK acquisition and utilization, but
also let its employees respond adequately to received SOK. The company
foresees a transition to software that is based on a platform of which is
formally proven that it is stable and correct; software functionality that
is not part of the platform is completely modularized. According to Net-
Comp, such a software architecture will alleviate bug localization, mod-
ule dependency determination and run-time software component updat-
ing processes.

ERPComp
In the context of software ecosystems, ERPComp envisages to provide
its partner niche players with real-time add-on operation knowledge by
means of a central add-on operation dashboard. According to the ven-
dor, adequate dashboard use would result in more intimate collaboration
with its partner niche players, and ultimately result in continuous im-
provement of software operation and software functionality.

CADIntComp
While SOK propagation helps CADIntComp in obtaining insight in the
capabilities of a niche player in terms of improvingCADInt technology, as
well as strengthening its relationship with particular niche players, CAD-
IntComp intends to acquire more knowledge of how CADInt is used and
appreciated in the field in future. Therefore, it attempts to further inten-
sify relationships with its niche players, since they are in closer contact
with actual end-users. CADIntComp may introduce a ‘social require-
ments engineering system’, in which the priority of niche players’ feature
requests is based on a niche player’s participation in the CADInt ecosys-
tem, and agreement with the feature request by other niche players.

KEY DERIVATIONS On both SECO scope levels, there are several areas in
which keystones plan to improve. First, keystone vendors intend to increase

64

Analysis of SOK Propagation Practices

effort to more precisely understand their end-users’ actual behavior and in-
tentions during software operation. Also, while SOK is contributive to under-
standing and responding to end-users, it is a challenge to determine to which
extent response to acquired SOK is experienced as adequate by the end-users. Third,
keystones envisage to propagate acquired SOK realtime to partners, providing
them with realtime software operation graphs and statistics, and involve these
partners in decision making, for instance concerning requirement prioritiza-
tion.

3.5 ANALYSIS OF SOK PROPAGATION PRACTICES

After interpretation, contextualization and abstraction of both the orchestra-
tion and propagation practices, as well as the key derivations described in sec-
tion 3.4, a classification along two dimensions (SECO life cycle phase and scope
level) was established in accordancewith the principles for interpretive field re-
search of Klein and Meyers [Klein and Myers 1999] (see table 3.3). As reflected
by the interview results, challenges resulting from software ecosystem partic-
ipation are not addressed in a predetermined, specific order. Simultaneously,
it appears that during the software ecosystem life cycle, focus of SECO orches-
tration practices (of keystones) and SOK propagation practices (of ecosystem
participants in general) changes — both on actor level and ecosystem level.

When keystones begin to orchestrate their software ecosystem, for instance,
their orchestration strategy and incentives are focused on building trustful rela-
tionships with other software-producing organizations (actor level) and stimu-
lating them to participate as a niche player in their software ecosystem (ecosys-
tem level). Keystones then propagate SOK to address the challenges of relation-
ship management (e.g. through software operation monitoring and compati-
bility verification) and software quality management (e.g. through utilization
of SOK for identifying the root cause of software operation failures, or Heisen-
bug isolation). In the longer term, keystones attempt to sustain orchestration of
their software ecosystem.

On the longer term, orchestration of keystones is focused on strengthening
the trust a niche player has in the ecosystem and its keystone (actor level) and
on the actual contribution of partners to the ecosystem (ecosystem level). While
ecosystem actors continue to be focused on software qualitymanagement, SOK
is propagated for planning software portfolios and software product lines (e.g.
through alignment of product functionality with actual feature adoption), and
to maintain insight in the ecosystem’s composition (e.g. through monitoring
ecosystem entrance and exit).

65

Chapter 3 — On the Role of SOK within Software Ecosystems

Based on the identified practices, we particularly consider the challenges de-
scribed in sections 3.4.1–3.4.4 (i.e. relationship management, ecosystem com-
position comprehension, software quality management, portfolio and product
line planning) addressed through utilization and propagation of SOK.We con-
sider the challenge described in section 3.4.5 (i.e. orchestration strategy andpol-
icy development) to a lesser extent supported by the identified practices, since
we found limited concrete proof for the addressing of this challenge through
actual utilization and propagation of SOK.

While challenges resulting from software ecosystem participation are ad-
dressed through effective utilization and propagation of SOK, additional chal-
lenges emerge. For example, keystones should be prepared to cope with niche
player distrust resulting from SOK utilization (e.g., when SOK propagated to a
keystone indicates frequent unstableness of certain niche player software). Sec-
ond, vendors that acquire, utilize and propagate SOK to understand and serve
their end-users, may find it challenging to determine how and when they re-
spond in such a manner, that the end-user feels understood and served well.
Third, concerning SOKacquisition, utilization andpropagationprocesses, software-
producing organizations will have to find an appropriate balance between real-
izing adequate customer intimacy and protecting the same customer’s privacy.

3.6 CONCLUSIONS AND FUTURE WORK

While software vendors are aware of the software ecosystems inwhich they op-
erate and their relationships with other ecosystem participants, vendors all too
often are unsuccessful in recognizing the potential value and role of software
operation knowledge (SOK) in software ecosystems.

In this paper, we state that SOK forms an essential pulse in the veins of soft-
ware ecosystems, and serves as a primary enabler for software vendors to thrive
and flourish in the ecosystems in which they operate. We substantiate our po-
sition by reporting on the operational SOK utilization and propagation prac-
tices of four software-producing organizations, which are successfully operat-
ing in software ecosystems and address challenges resulting from participation
in these ecosystems through utilization and propagation of SOK. With in total
four of five challenges addressed by these organizations, we found substantial
support for our position.

Based on analysis of the identifiedpractices, we conclude that software ecosys-
tem keystones should continuously invest in infrastructures for SOK acquisi-
tion, utilization and propagation to (allow niche players to) effectively utilize
the ‘power of many’ in obtaining knowledge of in-the-field software and end-

66

Conclusions and Future Work

user behavior, and therewith in increasing the quality and robustness of their
software. In the long term, successful SOK utilization and propagation provide
keystone software vendors with competitive advantage in terms of ecosystem
stability, ecosystem attractiveness, software quality and end-user satisfaction.
Ecosystem participants should aim for stable and robust relationships: such re-
lationships contribute to a stable and attractive software ecosystem. Therefore,
mutual trust between software ecosystem participants is essential for effective
SOK propagation within software ecosystems: distrustful ecosystem partici-
pants diminish or evendiscontinue propagation of their SOK to partners, which
may cause these partners to focus on participation in alternative, rival ecosys-
tems.

Future work includes quantification and qualification of SOK propagation
in software ecosystems. For example, metrics for measuring the effectiveness
of SOK propagation and the contribution of SOK propagation to the vitality of
software ecosystems are to be developed.

67

Chapter 3 — On the Role of SOK within Software Ecosystems

68

Part III

Process Improvement
through

Software Operation Knowledge

69

4
Reducing Maintenance Effort

through Software Operation Knowledge

ABSTRACT

Knowledge of in-the-field software operation is acquired unsophisticatedly: ac-
quisition processes are implemented ad hoc, application-specific and are only
triggered when end-users experience severe failures. Vendors that do acquire
such knowledge structurally from their software applications, often are unsuc-
cessful in visualizing it in a consistent anduniformmanner. A generic approach
to acquisition and presentation of software operation knowledge reduces the
time vendors need to integrate acquisition logic into their applications, as well
as the timeneeded to analyze, compare andpresent uniform software operation
data resulting from in-the-field software operation. This paper proposes a tech-
nique for software operation knowledge acquisition and presentation through
generic recording and visualization of software operation. A prototype tool
implementing this technique is presented, as well as an extensive empirical
evaluation of the tool using an eclectic set of instruments (an experiment, two
case studies and expert focus group discussions) involving three widely-used
software applications. Results show that the technique is expected to reduce
software maintenance effort and increase comprehension of end-user software
operation.∗

∗This work has been published as Reducing Maintenance Effort through Software Operation Knowl-
edge: An Eclectic Empirical Evaluation in the proceedings of the 15th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2011) [Van der Schuur et al. 2011b]. It is co-authored
by Slinger Jansen and Sjaak Brinkkemper.

71

Chapter 4 — Reducing Maintenance Effort through SOK

4.1 INTRODUCTION

One of themost challenging tasks in softwaremaintenance is to understand how
software operates1 in the field. While software vendors strive to build fast, ro-
bust, and intuitive software and therefore extensively test and verify it in their
own environment, a plethora of hardware and software environment facets
cause software to behave differently in the field. Unknown bugs, incompati-
bility issues and performance problems are just three types of complications
that may surface only after deployment [Glerum et al. 2009]. These compli-
cations can be mitigated using knowledge of in-the-field software operation
during typical software engineering tasks such as bug localization and fixing,
crash analysis and user experience improvement [Madhavji et al. 2006]. Insight
in the various environments software operates in, as well as knowledge of how
end-users behave, their expectations of the software and their actual intentions
of using the software are only a few examples that can aid software vendors in
building robust and stable software applications.

While interest in software operation knowledge or SOK (i.e., knowledge of
in-the-field software operation) has broadened to include software performance,
quality and usage, as well as end-user experience feedback aspects [Van der
Schuur et al. 2010], software vendors still acquire SOK in an unsophisticated
manner [Jansen et al. 2008]. Acquisition processes are implemented ad hoc,
application-specific and exception-triggered, which causes acquired data to be
unstructured and not uniform across applications. As a consequence, min-
ing, analysis and integration of acquired data can be time-consuming and error
prone, while software engineering activities benefit only little. Software ven-
dors that do structurally acquire software operation data, frequently struggle
with extracting valuable software operation knowledge from these data and
visualizing extracted knowledge effectively and meaningfully.

The main question we attempt to answer in this paper is ‘How can software
maintenance effort be reduced through generic recording and visualization of operation
of deployed software?’. To answer this question, we propose a novel technique
that (1) enables software vendors to acquire SOK independent of target soft-
ware, (2) allows vendors to get insight in operation of their software in the field
and (3) contributes to reduction of software maintenance effort. We present a
prototype tool that implements this technique and enables vendors to analyze,
visualize and compare uniform operation data, allowing easy presentation and

1In this paper, we define ‘software operation’ as the fact or condition of deployed software func-
tioning in a specified manner.

72

Related Work

utilization of such data. The generic SOK acquisition and presentation tech-
nique with corresponding tool are the contributions of this research.

The soundness and industrial utility of the technique are demonstrated through
evaluation of the tool using an eclectic (i.e. deliberately composed) set of em-
pirical evaluation instruments [Easterbrook et al. 2008, Kitchenham et al. 2008]:
an experiment and two case studies (i.e., field study [Hevner et al. 2004]) as well
as expert focus group discussions. The evaluation involves three widely-used
software applications.

This paper continues with placing our work into context in section 4.2. Next,
the software operation knowledge acquisition and presentation technique is
proposed (section 4.3). Section 4.4 introduces the prototype tool; the empir-
ical evaluation approach and results are described in section 4.5. Finally, re-
search limitations (section 4.6), conclusions and future work (section 4.7) are
presented.

4.2 RELATED WORK

Many research efforts and tools cover the subject of SOK acquisition, but refer
to such knowledge with various denotations and use it to accomplish various
goals. First, software operation knowledge is acquired to monitor deployed
software [Bowring et al. 2003, Nusayr and Cook 2009, Kristjánsson and Van der
Schuur 2009]. However, in general, code modifications are needed in order to
integrate monitoring techniques with the target software. Furthermore, while
these techniques suffice in signaling problems regarding the functioning of
software, they assist only little in pinpointing problem causes and actually elim-
inating bugs. Using our technique, no code modifications are needed to enable
operation recording. Operation recording visualizations assist in identifying
and eliminating software failure causes.

Second, SOK is also acquired to debug software. Clause and Orso [Clause
and Orso 2007] present a technique for recording, minimizing and replaying
failing software executions. The technique is limited, however, since only in-
teractions between an application and its environment as well as ‘relevant’ por-
tions of the environment are recorded. While our technique also records certain
environment details, relevant method events are recorded instead of interac-
tions between an application and its operation environment.

Narayanasamy et al. [Narayanasamy et al. 2005] propose their BugNet ar-
chitecture that continuously records information during software production
runs, to support developers in characterizing bugs by enabling them to replay
the program’s operation before a crash. Even though BugNet provides the abil-

73

Chapter 4 — Reducing Maintenance Effort through SOK

ity to replay an application’s executions across context switches and interrupts,
BugNet requires a specific environment as well as significant effort to be inte-
grated in a vendor’s software product. Also, it is left unclear to which extent
the proposed techniques contribute to software maintenance or software op-
eration comprehension. Our technique allows easy integration into existing
software products, and supports both software maintenance and software op-
eration comprehension.

Third, several techniques for presenting software operation recordings ex-
ist [Cornelissen et al. 2008, Jones et al. 2004]. Although these techniques are so-
phisticated, it is unclear what are the usage requirements for these techniques
and to which extent these techniques contribute to comprehension of end-user
software operation.

4.3 SOK ACQUIS IT ION AND PRESENTATION

Wepropose a software operation knowledge acquisition and presentation tech-
nique that is designed to reduce softwaremaintenance effort and increase com-
prehension of end-user software operation, throughgeneric (i.e., independently
of target software) recording and visualization of software operation.

Existing approaches have three shortcomings with respect to this goal. First,
most approaches require significant integration effort (e.g. source code changes)
to realize operation recording or visualization (as discussed in section 4.2). Sec-
ond, most approaches only work for a specific system or software application
and thus are not generically applicable. Third, resulting recordings often con-
trast in structure and format, depending on the software of which the opera-
tion is being recorded. As a consequence, recordings are presented erratically
and are difficult to analyze, comprehend or compare. Moreover, software en-
gineering tasks benefit only little from acquired knowledge of the behavior of
software and end-users in the field. We addressed these issues by developing
a technique that (1) allows generic recording of in-the-field software operation,
without requiring thorough knowledge of the composition (i.e. source code) of
the target software, or deployment of additional tools and (2) allows uniform
storage and visualization of resulting operation recordings.

Our SOKacquisition andpresentation technique consists of aweaving (4.3.1),
recording (4.3.2) and a visualization (4.3.3) process and can bemapped onto the
SOK framework [Van der Schuur et al. 2010]; a usage scenario2 is provided in
figure 4.1. Recording of software operation is preceded by a weaving process

2Note that the SOK framework integration process is optional [Van der Schuur et al. 2010] and
omitted in this figure.

74

SOK Acquisition and Presentation

in which SOK acquisition logic is woven into the executable that is the target
of operation recording. This logic is responsible for generically acquiring op-
eration data and uniformly writing operation recordings to disk. Operation
recordings resulting from application of our technique, called SOK prints, rep-
resent behavior of both software and end-user during software operation in
the form of event sequences and sources. SOK prints can be visualized and
replayed. By analyzing these recordings, knowledge of software performance,
quality and usage during operation recording can be acquired.

4.3.1 Weaving

Aspect-oriented programming (AOP) is effectively deployed in the domains of
software monitoring and tracing [Nusayr and Cook 2009, Van der Schuur et al.
2008]. However, we encounter in industry that product software vendors have
to overcome time-consuming obstacleswhen they leverageAOP repeatedly and
separately for each of their software products: vendors write product-specific
SOK acquisition aspects and extend their AOP libraries to new (versions of the
same) software products.

In our technique, aspect weaving is used to weave SOK acquisition logic
independent of the bytecode (e.g. Java bytecode or the .NET Common Inter-
mediate Language) of the executable of which operation has to be recorded,
without requiring knowledge of, or integration into the source code of a tar-
get executable. Given the set of all methods of an executableM, S is the set of
weaving candidate methods, where S ⊆ M. For each method µ ∈ S, acquisi-
tion logic in the form of a set of advices A is woven into the executable at join
points γentry(µ), γexit(µ) and γexception(µ). By weaving the logic at those join points,
software performance, quality and usage can be recorded.

When the weaving process has finished, a SOK assembly (an executable con-
taining the woven acquisition logic) is compiled. Also, a SOK assembly de-
scriptor is generated. This extensible structure description contains all method
descriptions (i.e., signature, visibility and return type) of all classes of the ex-
ecutable into which acquisition logic is woven. During the assembly descrip-
tor generation process, a unique key is assigned to each method and method
parameter. SOK print events are created during operation recording and cor-
respond to one method and its parameters. Methods and parameters are ref-
erenced by these keys to minimize the SOK print size, and performance loss
induced by the woven acquisition logic.

75

Chapter 4 — Reducing Maintenance Effort through SOK

4.3.2 Recording

When a SOK assembly is executed, three types of events ε(µ) are recorded for
each method µ ∈ S: method entries, εentry(µ), method exits, εexit(µ) and unhan-
dled exceptions, εexception(µ). SOK acquisition occurs when, as part of software
operation, an µ ∈ S is called. A SOK print is created with the first call to any
µ ∈ S. With the occurrence of each event ε(µ), the SOK print is updated with
additional data.

Every event ε(µ) references the method µ it occurs at, as well as the parame-
ters of µ, with the keys by which the method or parameters are defined in the
assembly descriptor. Also, the time and date at which an event ε(µ) occurred,
as well as an event source identifier, are stored for each event. An event source
represents a user (profile) that is (indirectly) accountable for events. Per event
type, additional data are recorded:

Method Entries
Per method entry event εentry(µ), all string representations of the values of
all method parameters are recorded, where a string representation is the
string return value of a public method that can be called on an object of
the same type as the parameter variable. If a method has no parameters,
only call time and date are recorded.

Method Exits
Per method exit event εexit(µ), all string representations of the method re-
turn value are recorded, where a string representation is the string return
value of a public method that can be called on an object of the same type
as the method return value. If a method’s return type is void, no data are
recorded.

Unhandled Exceptions
Per unhandled exception εexception(µ), the exception’s type, message, stack
trace and data object are recorded. If an exception cause is defined in the
form of an InnerException, the type, message and stack trace correspond-
ing to the inner exception are recorded in addition.

Since end-users are the (indirect) source of software operation, an event source
contained in a SOK print is described by means of properties that uniquely
identify the user currently executing the woven software. Together with these
credentials, a source description consists of the operation session start date and
time, environment variables, hardware specifications and operating system de-
tails of the system onwhich the woven software is executed. When an end-user

76

Nuntia Tool

executes a SOKassembly, closes it and executes it again, the corresponding SOK
print contains two source descriptions, since two operation sessions have taken
place.

4.3.3 Visualization

SOK prints can be represented graphically to support comprehension of both
software and end-user behavior during software operation. For example, the
causality of user actions is visualized as a state or flow diagram. Event sources
are visualized based on their specific properties (e.g. username), and opera-
tion recording statistics as well as corresponding graphs are created based on
the operation data that constitute one or multiple SOK prints. Also, visualizing
recorded event chains can support (comprehension of) event replays. Visual-
ization of SOK prints is not dependent on weaving or recording processes.

4.4 NUNTIA TOOL

To evaluate our SOK acquisition and presentation technique, we implemented
it in a binary instrumentation tool named Nuntia. In line with the description
of our technique in section 4.3, the tool enables generic weaving of SOK acquisi-
tion logic into assemblies and provides software operation recording function-
ality by creating SOK prints. A usage scenario of the technique using Nuntia is
provided in figure 4.1.

4.4.1 Weaving

Implementation of a generic executable weaving process was a challenge. The
structure and contents of compiled-code executables depend on the language
the software is written in, the compiler used to create the executable as well as
the platform the executable is compiled for. Since deploy-time (post-compilation)
weaving requires disassembly, implementation of language-, compiler- and plat-
form independentpost-compilationweaving requires copingwithmany language-
, compiler- and platform specific details that do not effect the principles of our
technique. Therefore, we decided to focus on implementing the technique for
one type of executables: Nuntia provides functionality to weave SOK acquisi-
tion logic into all .NET assemblies compiledwith the C# compiler that is part of
the .NET Framework3 [Microsoft .NET Framework]. AlthoughNuntia requires
.NET, our technique is also applicable to other languages that allow binary in-

3Note thatNuntiamay operate platform independently byweaving into assemblies createdwith
the C# compiler that is part of the Mono project [Mono Project].

77

Chapter 4 — Reducing Maintenance Effort through SOK

Id
en

tifi
ca

tio
n

Customer Software Vendor

Assembly
Development perspective

Developer

Assembly

Nuntia tool

content analysis

SOK acquisition criteria

Assembly

woven logic

SOK acquisition
logic weaving

woven logic

software operation
recording

Assembly

Storage

Tester
Developer
Maintainer

software operation
information

operation
visualisation

operation
analysis

Software
development

End-user behavior
comprehension

Software
maintenance

Patched
assembly

Patched
assembly

Ac
qu

is
iti

on
Pr

es
en

ta
tio

n
U

til
iz

at
io

n

Assembly
descriptor

SOK assembly
 descriptor generation

Assembly
descriptor

End-user

software operation knowledge

software operation knowledge

Legend

Deployment

software
operation

data
Storage

Nuntia tool
software
operation

knowledge

SOK
acquisition

criteria
Data Mining +

Abstraction

software
operation

data

Behavior

A

B

C

Figure 4.1 SOK acquisition and presentation technique usage scenario

78

Nuntia Tool

strumentation and reflection (e.g. Java or Objective-C). To implement the SOK
acquisition logic weaving functionality, a SOK acquisition host and a plug-in
for the PostSharp framework [The PostSharp Platform] have been developed. A
second challenge was to make sure that for (all possible executions of) all .NET
assemblies, stacks were read and manipulated such that all types of parame-
ters, return values and exceptions could be read correctly, without introducing
unwanted side effects to the target software. We are aware of the fact that Nun-
tia might introduce unwanted side effects, for example in realtime, distributed
or complex recursive methods. Future research and development is needed to
limit these effects.

After successful weaving of the SOK acquisition logic at join points of se-
lected methods (S), a SOK assembly descriptor is generated in the form of an
XML file. SOK assembly descriptors are validated against an XML schema that
defines the data structure inwhich assembly class, method and parameter char-
acteristics are stored.

4.4.2 Recording

Analogous to the recording mechanism description in section 4.3, logic woven
by the Nuntia tool creates an empty SOK print with the initial call of an assem-
blymethod. Similarly, with the occurrence ofmethod entries, method exits and
unhandled exceptions during operation of the assembly, the SOK print is up-
dated with additional data. SOK prints are stored in the form of an XML file
that is validated against an XML schema definition.

To minimize performance loss induced by SOK print updating, names and
values are stored in SOK assembly descriptors and referenced by SOK prints
instead of repetitively including those in SOK prints. However, one should
recognize that both the performance loss induced by SOK print updating as
well as the size of the resulting SOK prints remain directly proportional to the
number of join points at which acquisition logic is woven.

4.4.3 Visualization

The Nuntia tool contains functionality to visualize and replay in-the-field soft-
ware operation that is recorded in the form of SOK prints. Event sequences are
replayed event-by-event.

Figure 4.2 shows a screenshotof Nuntia’s SOK print visualization and re-
play functionality. A SOK print is visualized as a software operation sequence
graph, with one edge (event) and two nodes (methods) highlighted. Nodes can

79

Chapter 4 — Reducing Maintenance Effort through SOK

Render Settings
Graph Controls Replay Controls

Event Properties

Parameter Values

SOK Print Statistics

Software Operation Graph

Event Sources
Environment Data

Figure 4.2 Nuntia SOK print visualization and replay

have an elliptical or rhombic shape. Elliptical nodes represent methods; rhom-
bic nodes represent exceptions. In figure 4.2, for instance, edge 88 represents an
entry of method B from method A and is highlighted. Since the selected event
is a method entry event, Nuntia shows the types, names and (string represen-
tations of) parameter values that are passed to method B as part of the entry
event. With the highlighted call to method B in figure 4.2, only one parameter
named letterxwith value Letter X is passed. For a method exit event, Nuntia
shows the type, name and value of the return variable. When a method is se-
lected, the method’s class, type, name, signature and percentage of successful
returns are displayed.

In addition to event andmethod details, Nuntia shows properties of the SOK
print that is loaded. The number of events, method entries, method exits, ex-
ceptions as well as the time span during which the SOK print was recorded are
displayed. Also, as shown in figure 4.2, Nuntia shows a list of event sources and
per event source a list with environment data. By selecting multiple sources,
event sequences of multiple sources can be rendered simultaneously. TheNun-
tia tool also allows simultaneous visualization of multiple software operation
sessions (see figure 4.5). When doing so, instead of event numbering, Nuntia
shows at the edges the number of times a particular event has occurred during
the total time all SOK print recordings were recorded. SOK print visualization

80

Empirical Evaluation

is implemented using Microsoft Automatic Graph Layout [Nachmanson et al.
2008]. Nuntia is written in C# and requires version 3.5 SP1 of the .NET frame-
work [Microsoft .NET Framework].

4.5 EMPIRICAL EVALUATION

To investigate the soundness and industrial utility of the SOK acquisition and
presentation technique, the following research questions andpropositionswere
evaluated. If all propositions corresponding to a particular research question
are true, we consider that question to be answered positively.

RQ 1 — Does the technique allow generic software operation recording?

P1Nuntiaweaves functioning SOK acquisition logic into an executable,
preserving the executable’s original functionality without introducing
unwanted or unexpected side effects.

P2Nuntiaweaves functioning SOK acquisition logic into executables of
diverse applications, developed by distinct and independent software
vendors.

RQ 2 — Does the technique allow accurate recording and replay of software
operation?

P3 The events recorded in SOK prints by Nuntia are consistent with
software operation during recording.

P4 Visualizations and replays of SOK prints resulting from Nuntia are
consistent with software operation during recording.

RQ 3—Does the technique support software maintenance and operation com-
prehension?

P5 Nuntia provides valuable insight in, and increases comprehension
of behavior of in-the-field software and end-users
P6 Nuntia discloses new knowledge that is useful in software mainte-
nance activities and is not available without the introduction of Nuntia.
P7 Nuntia reduces the time needed to analyze software operation fail-
ures.

81

Chapter 4 — Reducing Maintenance Effort through SOK

After Easterbrook et al. [Easterbrook et al. 2008] and Kitchenham et al. [Kit-
chenham et al. 2008], we employed an eclectic set of empirical evaluation in-
struments to answer these research questions, and therewith evaluate our tech-
nique in both scientific and industrial contexts.

Table 4.1 shows per research question which evaluation instrument is used
to answer the question. A questionnaire was used as a basis for expert focus
group discussions and case study evaluation (for reasons of employee availabil-
ity, case study results were evaluatedwith CADComp employees). Participants
confirmed or rejected each statement using a Likert scale (1: strongly disagree,
5: strongly agree). Questionnaire statements and results are presented in ta-
ble 4.2.

Empirical Evaluation Instrument RQ1 RQ2 RQ3

Field Study Paint.NET Experiment X X

Industrial Case Studies X X X

Expert Focus Group Discussions X

Table 4.1 Empirical evaluation instruments per research question

We deliberately selected both free and commercial software that is widely
used in the field, to acquire SOK from. All three subjects based on the .NET
framework [Microsoft .NETFramework]: Paint.NET is based onWindowsForms
(C#), ERPProd onASP.NET (Visual Basic) andCADProd onWindowsPresenta-
tion Foundation (C#). For all three subjects, we tried to create a realistic instance
of the scenario presented in figure 4.1. We regard the research as repeatable
with the same results, presuming similar circumstances (similar tools, similar-
sized software vendors, etc.). Note that for reasons of confidentiality, names of
the latter subjects and their vendors have been anonymized.

Paint.NET Experiment
The correctness of Nuntia’s software operation recording and visualiza-
tion functionality (i.e., the extent to which Nuntia SOK prints represent
the actual software operation correctly) is demonstrated by comparing
SOK acquired by Nuntia during usage of Paint.NET, throughout we de-
liberately exposed bugs, with Paint.NET’s change log. Paint.NET is a free
and widely-used image and photo editing application for the Windows
operating system, developed by dotPDN. Since the 1.0 release in 2004, 14
releases of the application have been published. The last stable release at
the time of writing is 3.5.6, which dates from November, 2010.

82

Empirical Evaluation

Industrial Case Studies
The extent to which Nuntia reduces software maintenance effort, and
supports software development as well as comprehension of end-user
software operation, is evaluated by means of two case studies performed
at CADComp and ERPComp.

CADComp is a European software vendor that was founded in 1990 and
is currently performing development activities in the Netherlands, Bel-
gium and Romania. Development of CADProd, a CAD drawingmanage-
ment application, started in 2007. Version 1.0 has been released in 2009
and is used by more than 300 customers. ERPComp is an ERP software
vendor with 2,500 employees and establishments in 40 countries. ERP-
Comp was founded in 1984 and serves customers in 125 different coun-
tries. ERPComp develops ERPProd, an accounting solution provided as
a secure online internet service. ERPProd 1.0 has been released in 2005.
Since then, ten major versions have been released. The last release at the
time of writing is 2010-2, which is used by 16,600 customers.

SOK prints resulting from recording operation of these two industrial
software applications (CADProd being deployed at the customer site) us-
ing Nuntia, were analyzed and discussed with key developers, maintain-
ers and managers employed by the two vendors. Also, these employees
were invited to participate in evaluative sessions in which their opinions
about the functionality and utility of the Nuntia tool were evaluated.

Expert Focus Group Discussions
Chief technology officers, productmanagers and senior team leaders from
industry (recruited bymeans of an invitation sent to our professional and
educational networks) were assembled in a focus group to discuss the
utility of both the Nuntia tool and the SOK acquisition and presentation
technique, in processes not directly related to software development (e.g.
product management).

4.5.1 Paint.NET Experiment

APPROACH After examining Paint.NET’s change log and road map, we se-
lected version 3.35 to evaluate Nuntia. According to its change log, this version
contains a bug causing a program crash when encountered, which is fixed in
the subsequent release (Paint.NET 3.36). According to the change log, this par-
ticular version would crash ‘When using the “Fixed Ratio” feature of the Rect-
angle Selection tool, if 0was specified for both thewidth and height’ [Paint.NET

83

Chapter 4 — Reducing Maintenance Effort through SOK

Roadmap and Change Log]. During evaluation we focused on this bug, which
we will refer to as ‘fixed ratio bug’.

First, we deployed Paint.NET on our test machine. Using Nuntia, we gen-
erated SOK assemblies and assembly descriptors for Paint.NET 3.35. SPaint.NET ,
a set of Paint.NET’s class methods used by the tool to weave SOK acquisition
logic into the Paint.NET assemblies, was composed based on the Paint.NET
change log as well as the assembly metadata Nuntia provides after having read
an assembly.

In this particular case, according to the change log, the bug is related
to the ‘Fixed Ratio’ feature of the ‘Rectangle Selection’ tool. Therefore,
we focused on Paint.NET’s classes PaintDotNet.Tools.SelectionTool and
PaintDotNet.Tools.RectangleSelectTool. Of those classes, the methods
CreateSelectionPolygon and CreateShape were marked as candidates for
SPaint.NET . During analysis of assembly information provided by Nuntia, we
discovered the class PaintDotNet.SelectionDrawModeInfo. Of this class, we
marked the methods get_Width and get_Height, since the fixed ratio bug
crashes Paint.NET when ‘0’ is specified for both the width and the height of
the selection. Next, a SOK assembly was generated according to the process
described in section 4.3. We reproduced the fixed ratio bug using the SOK as-
sembly and analyzed the resulting SOK print afterwards. Next, we repeated
these steps with Paint.NET 3.36 with S identical to the set that was used with
Paint.NET 3.35 and compared the created SOK print with the one of Paint.NET
3.35. During the recording of both versions, identical actions were performed.

RESULTS Figure 4.3 shows the visualization of the SOK print that was created
during the fixed ratio bug recording session we performed. The program crash
caused by the bug is visualized by two rhombic nodes (which, as described
in section 4.4, represent exceptions). The first exception occurs in method
CreateShape, after the selection width and height both have been requested
twice. Analyzing the SOK print using the Nuntia tool, the first exception is
an OverflowException with the message ‘Negating the minimum value of a
twos complement number is invalid.’, originating from Math.AbsHelper(Int32

value), PaintDotNet.Utility.PointsToRectangle(Point a, Point b) and
PaintDotNet.Tools.RectangleSelectTool.CreateShape(List‘1 tracePoints).
This exception was included in the pdncrash.log file Paint.NET gen-
erated when the application crashed. The second exception is a
NullReferenceException occurring in method CreateSelectionPolygon,
after CreateShape has finished. The second exception originates from
PaintDotNet.Utility.SutherlandHodgmanOneAxis(RectangleF bounds,

84

Empirical Evaluation

Identifier Statement Average (σ)

CADComp Focus
group

S1 Nuntia provides new, valuable insight in the behavior
of our software in the field

4.44 (0.61) 4.00 (0.82)

S2 Nuntia provides new, valuable insight in the behavior
of our end-users in the field

4.31 (0.85) 4.00 (0.94)

S3 Nuntia increases my comprehension of the behavior
of our software in the field

3.81 (0.81) 4.44 (0.50)

S4 Nuntia increases my comprehension of the behavior
of our end-users in the field

3.75 (0.90) 3.89 (0.87)

S5 Nuntia shortens the time needed to find bugs 3.94 (0.83) 3.00 (0.94)
S6 Nuntia shortens the time needed to solve bugs 3.63 (0.93) 3.67 (0.94)
S7 Nuntia discloses knowledge I did not have before 4.06 (0.56) 4.33 (0.67)
S8 Nuntia supports our software maintenance activities 3.88 (0.78) 3.89 (0.57)
S9 Nuntia supports our software development activities 3.56 (0.93) 3.67 (1.05)
S10 Nuntia supports other activities (please specify which

activities)
3.63 (1.11) 3.44 (0.68)

Table 4.2 Questionnaire statements and results

RectangleEdge edge, List‘1 v), PaintDotNet.Utility.SutherlandHodgman(Rec-
tangleF bounds, List‘1 v) and PaintDotNet.Tools.SelectionTool.CreateSe-

lection Polygon() with the message ‘Object reference not set to an instance
of an object.’. This exception was not mentioned in the pdncrash.log file.

Figure 4.4 shows the visualization of the SOK print that was created dur-
ing the recording session of Paint.NET version 3.36. As the fixed ratio bug
has been fixed, no exceptions are part of this recording. Furthermore, the re-
turn types ofmethods CreateShape and CreateSelectionPolygon have changed
from void in version 3.35 to Collections.Generic.List‘1[Drawing.PointF]

and Drawing.PointF[] in version 3.36, respectively, as became clear after SOK
print analysis using the Nuntia tool. In both versions, the return values of all
calls to both the get_Height and get_Width methods were 0 (of type float64).
In otherwords, the fixed ratio bugwas not solved by altering the representation
of the selection size parameters, or by preventing a selection with area zero to
be created internally.

Regarding recording execution of the ‘Fixed Ratio’ selection featurewith ver-
sions 3.35 and 3.36 of Paint.NET using the Nuntia tool, SOK prints resulting
from this recording are consistent with the behavior of Paint.NET described in
the change log of the software.

85

Chapter 4 — Reducing Maintenance Effort through SOK

Figure 4.3 Visualization of ‘fixed ratio’ bug of Paint.NET 3.35

Figure 4.4 No exceptions occur using Paint.NET 3.36: fixed ratio bug fixed

Figure 4.5 Visualizing all acquired CADProd SOK prints simultaneously

86

Empirical Evaluation

4.5.2 Industrial Case Studies

APPROACH

CADProd
First, CADProd’s project leader was interviewed, to learn which parts of
the software CADComp desires to acquire SOK from. He indicated that
he was particularly interested in the data that is entered into CADProd
by its end-users. Based on this information, all ‘set_XYZ’ methods of rel-
evant CADProd business objects were marked as candidates for SCADProd,
where XYZ is a business object property name. Also, methods handling
search input and application launch, as well as methods that potentially
throw exceptions were added to SCADProd.

Next, operation of CADProd, deployed at one of CADComp’s 300 CAD-
Prod customers, was recorded by replacing the customer’s original CAD-
Prod assembly with a SOK assembly generated by the Nuntia tool. Five
of the customer’s end-users were asked to use the software normally for
about twenty minutes. Subsequent to the recording sessions, resulting
SOK prints were analyzed and discussed by visualizing and presenting
them to sixteen of CADComp’s managers, team leaders and developers.
Afterwards, these CADComp employees filled out the questionnaire (see
table 4.2). Participating employees had an average of 11.6 years experi-
ence in information technology (σ = 5.36 years).

ERPProd
ERPComp daily monitors the performance, quality and usage of ERP-
Prod, based on software operation data that is stored in application, er-
ror, help, and process logs. ERPProd’s product line manager and one of
ERPComp’s senior research engineers were interviewed to determine if
new and valuable SOK could be acquired fromERPProd using theNuntia
tool. Based on interview results, SERPProd was determined and Nuntia’s
generic weaving functionality was evaluated by creating SOK assemblies
of certain ERPProd assemblies. Next, the assemblies were deployed in
one of the ERPProd testing environments. Operation recording results
were evaluated with the senior research engineer afterwards.

RESULTS

CADProd
Figure 4.5 shows a fragment of a simultaneous visualization of
all SOK prints resulting from the CADProd operation recording

87

Chapter 4 — Reducing Maintenance Effort through SOK

sessions. The figure illustrates to which extent CADProd us-
age by the five end-users during the recording sessions resulted
in calls of two (of in total 86) methods in SCADProd. Methods
CADProd.Ulo.ULOFolderSearchResults.Search(Ulo.ULOFile File,

string strSearch, bool bDescriptions, bool bAllProfiles) and
CADProd.Ulo.ULOFile.get_FullPath() are called 14 and 317 times,
respectively. Of the 317 calls to the get_FullPath method, 36 (11,36%)
caused a NullReferenceException. SOK print analysis by CADProd
developers showed that these calls form a CADProd operation bug that
was unknown to CADComp’s CADProd developers. They reasoned
that the get_FullPath method exception might be caused by too long
path names for deeply nested projects. Also, the developers suggested
to implement functionality to show a graph consisting of only UI-related
methods and events, and proposed to display events in a list, both to
increase Nuntia’s usability.

Concerning the questionnaire results (see table 4.2 and figure 4.6), the
participants tended to agree with the statements, on average answering
the statements with 3.9 (σ = 0.83). Participants agreed the most with
statements S1 and S2 (these statements were answered with 4.4 (σ = 0.61)
and 4.3 (σ = 0.85) on average, respectively) and therewith found Nuntia
to provide new, valuable software operation insights. There was most
consensus on S7 (‘Nuntia discloses knowledge I did not have before’, avg.
answer 4.1, σ = 0.56) and S1 (4.4, σ = 0.61). Least consensus was reached
on S10 (σ = 1.11). Participants agreed the least on statements S9, S10
and S6; these statements were answered with 3.56 (σ = 0.93), 3.63 (σ =

1.11) and 3.63 (σ = 0.93) on average, respectively. In the context of S10,
product management, training and customer relationship management
were mentioned as other activities supported by Nuntia.

ERPProd
During the interview, the senior research engineer indicated that
ERPComp uses a graphing component to visualize and monitor
parts of the software operation knowledge they acquire. ERP-
Comp developers have written a library on top of this compo-
nent to provide it with XML data more easily. The engineer ex-
plained that when a graph looks faulty, developers would like to
be able to see the data that is provided to the graphing component.
Therefore, two of the component methods were added to SERPProd:
ERPComp.FCharts.SingleSeriesChart.AddMeasurement(string ID, string

88

Empirical Evaluation

label, object value) and ERPComp.FCharts.SingleSeriesChart.get_XML().
Generating a SOK assembly of the graphing component assembly, writ-
ten in Visual Basic, went without problems. When the original assembly
was replaced by the SOK assembly locally, a SOK print was created
successfully after the first refresh of the local ERPProd environment. The
data stored in the print matched the corresponding graphs that were
shown in the ASP.NET application. After numerous successful tests,
the SOK assemblies were deployed at the vendor’s internal testing web
servers. While SOK prints were created successfully at first, the envi-
ronment showed signs of unstableness after some time, possibly related
to concurrent requests, threading or file locking. The precise cause of
instability could not be identified; future case studies will be carried
out to continue the tests. During evaluation, the engineer indicated that
although the prototype still needs work, valuable knowledge can be
acquired with it. Also, he suggested the prototype to be extended with
functionality to easily enable or disable SOK acquisition.

4.5.3 Expert Focus Group Discussions

APPROACH A SOK focus group consisting of nine experts employed by nine
different European software vendors was assembled. The group consisted of
two CTOs, four product managers and three senior engineers, with 14 years
of experience in information technology on average (σ = 4.35 years). First,
the Nuntia prototype was introduced to the focus group experts by means of a
presentation in which the tool functionality and characteristics were exposed.
Next, a tool demo was given during which our SOK acquisition and presenta-
tion technique was demonstrated on Paint.NET 3.5.1. Also, during this demo,
the resulting SOK print was visualized and analyzed with the participants. Fi-
nally, a discussion about the technique and the tool was held and participants
were asked to fill out the questionnaire (see table 4.2). Participants were asked
to fill out the questionnaire with the assumption that the demonstrated tech-
nique was available for their software development platform or language.

RESULTS The nine focus group experts inclined to agree with the question-
naire statements (see table 4.2 and figure 4.7), on average answering the state-
ments with 3.83 (σ = 0.80). Participants agreed the most with statements S3
and S7 (these statements were answered with 4.4 (σ = 0.50) and 4.3 (σ = 0.67)
on average, respectively) and therewith foundNuntia to increase their compre-
hension of in-the-field behavior of their software, as well as to disclose knowl-
edge they did not have before. There was most consensus on S3 (avg. answer

89

Chapter 4 — Reducing Maintenance Effort through SOK

Figure 4.6 Answers to questionnaire statements by CADComp employees

4.4, σ = 0.50) and S8 (‘Nuntia supports our software maintenance activities’,
avg. answer 3.9, σ = 0.57). Least consensus was reached on S9 (σ = 1.05). Par-
ticipants agreed the least with statements S5 and S10; these statements were
answered with 3.0 (σ = 0.94) and 3.4 (σ = 0.68) on average, respectively. In the
context of statement 10, software testing and usability improvement were men-
tioned as other activities that are supported by Nuntia. Summarizing, partici-
pants foundNuntia to increase their comprehension of in-the-field operation of
their software and to disclose knowledge they did not have before. Also, they
were in harmony about finding Nuntia significantly supporting their software
maintenance activities.

During the discussion, participants stated that both the Nuntia tool as well
as the SOK acquisition and presentation technique it implements have high po-
tential. They indicated that insight in behavior of (end-users on) software (1) is
frequently required in product management and technical support processes,
and (2) is provided by the Nuntia tool. Also, participants saw utility of the tool
in software testing and quality assurance processes by simulating realistic soft-
ware operation during these processes, allowing them to acquire and analyze
SOK before actual deployment of the software.

90

Empirical Evaluation

Figure 4.7 Answers to questionnaire statements by focus group experts

The SOK acquisition and presentation technique in particular was valued es-
pecially because of its post-compilation and SOK acquisition criteria selection
characteristics, which, according to the participants, enable one to quickly ac-
quire valuable SOKwithout having thorough knowledge of the software source
code itself. The Nuntia tool was praised because of (1) its generic weaving and
recording functionality, (2) the small footprint of SOK assemblies compared to
the original assemblies and (3) the negligible performance loss induced by the
SOKacquisition logic. However, the composition ofSwas still considered quite
labor-intensive. Also, it was suggested to add graph filtering and critical path
indication functionality to Nuntia’s SOK print visualization features. Finally,
participants appreciated the separation of SOK acquisition and presentation
by means of a generic recording format.

SUMMARY Empirical evaluation results can be summarized as follows: (1) the
technique was considered sound and viable by developers, maintainers and
managers, mainly because of its flexibility in defining SOK acquisition crite-
ria and its post-compilation acquisition characteristics; (2) both the technique
and the tool were praised by managers expecting to gain further knowledge
and insights from the tool and technique (once implemented), helping them

91

Chapter 4 — Reducing Maintenance Effort through SOK

to rapidly increase software quality; (3) although still a prototype, Nuntia was
already valued by developers and maintainers because they expect faster bug
reproduction and fixing by using the tool.

TECHNICAL DETAILS Operation recording of Paint.NETwas performed on
aCore 2Duo T7500, 2.20GHz, with 2GB ofmemory, runningWindowsXP SP3.
The size of the PaintDotNet.exe assembly of Paint.NET 3.35 was 691 kB before
and 694 kB after weaving SOK acquisition logic for five methods. The size of
the SOK assembly descriptor generated for this version was 720 kB, containing
2,833 method descriptions. Regarding Paint.NET 3.36, the size of the assem-
bly was 692 kB before and 695 kB after weaving. The size of the SOK assem-
bly descriptor (containing 2,835 method descriptions) was 719 kB. Recording
of CADProd operation was performed on five different machines, all running
Windows XP SP3. Average recording duration was 18 minutes. The size of the
CADProd.exe assembly was 1,620 kB before and 1,676 kB after weaving SOK
acquisition logic for 86 methods. The size of the generated SOK assembly de-
scriptor was 1,025 kB, containing 3,612 method descriptions.

4.6 THREATS TO VALIDITY

The validity of the results is threatened by several factors. Primary threats to
the validity of the questionnaire results are the number of focus group experts
as well as the number of participating CADComp employees. Due to the small
number of questionnaire participants, (differences between) questionnaire re-
sults are not statistically significant. However, considering the total number
of participants that contributed to the empirical evaluation as well as their po-
sition in their organizations, we consider the questionnaire results indicative
and representative. Regarding the questionnaire answers, focus group experts
agreed modestly to statement S5 compared to their answers to the other state-
ments and to corresponding answers of CADComp employees. Since there is
no obvious explanation for the drop of agreement regarding this statement,
further interviews will be needed to clarify this drop.

Internal validity of our empirical evaluation is threatened by the size of S
(i.e., SPaint.NET and SCADProd): although both the experiment and the field study
show that, without a priori knowledge of the software source code and with
a relatively small set S, valuable SOK can be acquired, performance effects of
weaving acquisition logic at a large number of join points (e.g. when S = M)
still have to be investigated.

92

Conclusions and Future Work

External validity of the field study is threatened by the number of experi-
ments and case studies carried out. Although the tool has been evaluated using
three widely-used software applications that are based on various techniques
(Windows Forms, WPF and ASP.NET), more experiments are needed to estab-
lish the robustness of Nuntia’s weaving process, as well as the performance of
SOK assemblies generated by the tool.

While we believe that the evaluation of our SOK acquisition and presenta-
tion technique demonstrates the utility and soundness of the technique, further
research is needed to establish utility and soundness of the technique in com-
bination with other binary instrumentation tools.

4.7 CONCLUSIONS AND FUTURE WORK

Although software vendors recognize the relevance and potential of software
operation knowledge, such knowledge is frequently acquired ad hoc, im-
promptu and application-specific. As a consequence, acquired operation data
is laborious to analyze and compare, and a vendor’s existing practices, pro-
cesses and products are only limitedly supported and improved by acquired
SOK. We presented a technique that (1) enables software vendors to acquire
SOK independent of target software, (2) allows vendors to get a uniform in-
sight in operation of their software in the field and (3) contributes to reduction
of software maintenance effort. Furthermore, we presented a prototype tool
that implements this technique, and demonstrated the utility of the technique
in both scientific and industrial contexts through evaluation of the tool using an
eclectic set of empirical evaluation instruments. Three research questions and
seven propositions were formulated to determine the utility and effectiveness
of our technique.

RQ 1 — Does the technique allow generic software operation recording?

Although Nuntia has limitations regarding weaving heavily multi-threaded
applications and supporting different platforms, SOK acquisition logic was
successfully woven into diverse applications from different, independent soft-
ware vendors (P1): Paint.NET (Windows Forms) from dotPDN LLC, ERPProd
(ASP.NET) from ERPComp and CADProd (WPF) from CADComp. Further-
more, operation of these applications (of which CADProdwas deployed at cus-
tomer site) was successfully recorded. While a formal proof showing that un-
wanted or unexpected side effectswill never be introduced, can not be given, no
such effects were observed during local operation of resulting SOK assemblies
(P2). Therefore, we consider this question to be answered positively.

93

Chapter 4 — Reducing Maintenance Effort through SOK

RQ 2 — Does the technique allow accurate recording and replay of software
operation?

As shown by analysis of SOK prints resulting from the experiment and both
industrial case studies, events recorded in those prints by Nuntia were consis-
tentwith operation of corresponding software during recording (P3). Also, em-
pirical evaluation shows that operation visualization and replays of Paint.NET,
ERPProd and CADProd corresponded with the actual software operation dur-
ing recording (P4). Given these results, we consider this question to be an-
swered affirmatively. However, work is needed to mature textual representa-
tion of complex datatype variables during replay.

RQ 3—Does the technique support software maintenance and operation com-
prehension?

Questionnaire results show that Nuntia provides valuable insight in, and in-
creases comprehension of, in-the-field software operation aswell as in-the-field
end-user behavior (P5): the 25 questionnaire participants answered questions
1–4 with 4.3 (σ = 0.7), 4.2 (σ = 0.9), 4.0 (σ = 0.8) and 3.8 (σ = 0.9) on aver-
age, respectively. Also, those results indicate that Nuntia discloses knowledge
that is not available without the tool (P6): the participants answered S7 with
4.2 (σ = 0.6) on average. Both propositions are also confirmed by Paint.NET
experiment and CADProd case study results. To a lesser extent, the results
confirm that Nuntia reduces the time needed to analyze software operation
failures (P7): participants answered S5 with 3.6 (σ = 1.0) on average. Also,
focus group experts and case study evaluation session participants stated that
they expect Nuntia to reduce maintenance effort even more when it is (1) used
to acquire SOK from pilot customers during the beta stages of their software,
and (2) integrated in release versions of their software by default. Additional
field evaluation is needed to demonstrate more significant maintenance time
reductions.

Evaluation results indicate that the SOK acquisition and presentation tech-
nique is considered to effectively reducemaintenance effort, at least by the focus
group experts and case study evaluation session participants. Our implementa-
tion of this technique, Nuntia, increased comprehension of in-the-field software
operation, and is considered to reduce the time needed to analyze software
operation failures. Furthermore, the tool disclosed a substantial failure in the
CADProd application that was unknown to the CADProd development team
until SOK print analysis. Nuntia recorded, visualized and replayed software

94

Conclusions and Future Work

operation accurately. Therefore, we consider our technique as an adequate an-
swer to the main research question of this paper, ‘How can software maintenance
effort be reduced through generic recording and visualization of operation of deployed
software?’.

Future work includes Nuntia development to increase the robustness of the
weaving process and SOK assembly operation, and to diminish performance
effects induced by this process even further. Also, more refined, post-weaving
method selection (e.g. ‘all methods that write to disk’), as well as acquisition
of end-user feedback knowledge during software operation are part of future
work. Additional case studies will be performed to demonstrate more signif-
icant maintenance effort reduction. Finally, integration of acquired SOK with
existing practices, processes and products will be investigated.

95

Chapter 4 — Reducing Maintenance Effort through SOK

96

5
Pragmatic Process Improvement

through Software Operation Knowledge

ABSTRACT

Knowledge of in-the-field software operation is nowadays acquired by many
software-producing organizations. Vendors are effective in acquiring large
amounts of valuable software operation data to improve the quality of their
software products. For many vendors, however, it remains unclear how their
actual product software processes can be advanced through structural integra-
tion of such information. In this paper, we present a template method for in-
tegration of software operation information with product software processes,
and present four lessons learned that are identified based on a canonical ac-
tion research study of ten months, during which the method was instantiated
at a European software vendor. Results show that the template method con-
tributes to significant software quality increase, by pragmatic but measurable
improvement of software processes, without adhering to strict requirements
from cumbersome maturity models or process improvement frameworks.∗

∗This work has been published as If the SOK Fits, Wear It: Pragmatic Process Improvement through
Software Operation Knowledge in the proceedings of the 12th International Conference on Product
Focused Software Development and Process Improvement (PROFES 2011) [Van der Schuur et al.
2011a]. It is co-authored by Slinger Jansen and Sjaak Brinkkemper.

97

Chapter 5 — Pragmatic Process Improvement through SOK

5.1 INTRODUCTION

Nowadays, software vendors are continuously striving for refinement and im-
provement of their software processes to achieve and extend competitive ad-
vantage. Simultaneously, software vendors are experienced in acquiring in-the-
field operation data from their software products and services. It has become
common practice, for example, to monitor software operation and identify
operation failures by means of acquired operation information [Glerum et al.
2009, Van der Schuur et al. 2011b].

A wealth of software operation knowledge (SOK), gained from operation in-
formation analysis, can improve basically any software process in a product
software company, such as software maintenance, software product manage-
ment and customer support [Van der Schuur et al. 2010]. For many vendors,
however, it remains unclear how software processes can be improved through
integration of such information. As a consequence, acquired operation infor-
mation is left untouched during execution of product software processes.

The research question we attempt to answer in this paper is ‘How can product
software processes effectively be improved with acquired information of in-the-field soft-
ware operation?’. To answer this question, we introduce a template method for
integration of software operation informationwith product software processes,
and present four lessons learned that are identified based on a canonical action
research study of ten months, during which the method was instantiated at a
European software vendor. Several prescriptive ‘one-size-fits-all’ software pro-
cess improvement (SPI) approaches, such as the Capability Maturity Model In-
tegration (CMMI) and ISO/IEC 15504 (SPICE), are considered as too large, too
extensive and too expensive to comprehend and implement effectively within
small andmedium-sized companies [Conradi and Fuggetta 2002, Kuilboer and
Ashrafi 2000, Pettersson et al. 2008, Smite andGencel 2009]. As opposed to those
approaches, the SOK integration template method presented is pragmatic and
inductive, i.e., potential resulting improvements are based on the particular sit-
uation of an organization. The template method particularly describes what
are typical operation information integration activities and concepts; a method
instantiation describes how these activities should take place and how related
concepts are involved, specific to a vendor’s situation. This paper continues
with placing our work in context. Next, the research approach is detailed, after
which the SOK integration template method is presented (section 5.4). Sec-
tion 5.5 details in-the-field instantiation of the method, as well as an valuation
of integration experiences, resulting lessons learned and research limitations.
Finally, conclusions and future work are presented (section 5.6).

98

Related Work

5.2 RELATED WORK

Many research efforts cover the subject of software process improvement, but
only few consider knowledge of in-the-field software operation as an instru-
ment for improving product software processes.

For instance, Pettersson et al. [Pettersson et al. 2008] have proposed iFLAP,
a process improvement framework that is to some extent similar to the SOK
integration template method we presented: the framework is inductive in na-
ture and draws on knowledge that is already residing in the organization to
improve processes. However, as opposed to our method, the framework is
specifically directed towards, and evaluated with, requirements engineering
processes. Miler and Górski [Miler and Górski 2004] report on a case study
in which they apply a risk-driven software process improvement framework
in a real-life software project. Case study results demonstrate that the pro-
posed framework is able to reveal new, previously undetected risks that pro-
vide important input for process improvement. Although various undetected
risks were identified, the framework requires a high level of process descrip-
tion detail to be applied effectively. Iversen et al. [Iversen et al. 2004] proposed
a framework for understanding risk areas and resolution strategies within soft-
ware process improvement, as well as a corresponding risk management pro-
cess. Although both the framework and the process are comprehensive and
detailed, the frameworkwas not evaluated through empirical studies and prac-
tical use. Moreover, it was left unclear how and to which extent vendors over
time actually benefit from it.

Also, many efforts are directed to demonstrating the effectiveness of soft-
ware process improvement by means of CMM(I) [Dangle et al. 2005, Fitzgerald
and O’Kane 1999]. For example, Dangle et al. [Fitzgerald and O’Kane 1999]
analyze the role of process improvement in the context of small organizations
through an extensive case study inwhich CMM is applied. Based on this study,
lessons learned are identified. Although one lesson is somewhat analogous to
one of the lessonswehave identified, it is left unclear towhich extent the lessons
learned of Dangle et al. are generalizable to vendors that have implemented a
different maturity model, or no maturity model at all.

In this paper, we demonstrate pragmatic but measurable improvement of
product software processes, and identify lessons learned that are generalizable
to similar product software vendors.

99

Chapter 5 — Pragmatic Process Improvement through SOK

5.3 RESEARCH APPROACH

To investigate howproduct software processes can be effectively improvedwith
acquired information of in-the-field software operation, we designed a tem-
plate method for integration of such information with product software pro-
cesses, following a combination of design research and canonical action re-
search principles [Hevner et al. 2004, Davison et al. 2004]. We conducted an
extensive action research study at a European software vendor, during which
the method was used to integrate software operation information acquired by
the vendor with the vendor’s product software processes, and therewith im-
prove those processes. Based on study results, lessons learned are identified
that may serve as a guiding substrate for similar vendors in integrating opera-
tion information with their product software processes.

5.3.1 Research Site

The action research study presented in this paper was carried out at CAD-
Comp1, a European software vendor founded in 1990. The vendor develops
an industrial design application, CADProd, which is targeted on the Microsoft
Windows platform and is used daily bymore than 4,000 customers in five coun-
tries. Since the start of its development in 1995, four major versions of the ap-
plication have been released. Currently, CADComp employs about 100 people
and is established in the Netherlands, Belgium and Romania. From December,
2009 to September, 2010, we were present at the vendor’s main development
site to integrate acquired SOK in the vendor’s product software processes.

Before our study commenced, CADComp already acquired data of the in-
the-field operation of its software product CADProd in the form of customized
error reports. However, these data were not structurally analyzed, no software
operation information was extracted from these data and no operation infor-
mation was integrated with CADComp’s existing product software processes.

5.3.2 Canonical Action Research

The canonical action researchmethod described byDavison et al. [Davison et al.
2004] was used to structure the research activities. We attempted to satisfy each
of their ‘canonical action research principles’:

1Note that for reasons of confidentiality, the names of the vendor and its software products have
been anonymized.

100

Research Approach

1. Principle of the Researcher-Client Agreement
The study was conducted at the European software vendor CADComp.
Both the researchers and the vendor agreed on the action research ap-
proach; the vendor indicated that it is in need of an approach for im-
proving its product software processes with the use of acquired opera-
tion data. We have agreed on a research plan that contains an overview
of the shared research objectives as well as the data that was to be col-
lected during the study (e.g. software architecture specifications, process
descriptions, memos, semi-structured interviews, etc.)

2. Principle of the Cyclical Process Model
The cyclical process model [Davison et al. 2004], originally proposed by
Susman and Evered [Susman and Evered 1978], served as a basis for our
work at the vendor. Structuring research activities bymeans of thismodel
ensures adequate action planning, action taking and evaluation, as well
as specifying what other vendors and researchers could learn from our
study.

3. Principle of Theory
According to Davison et al. [Davison et al. 2004], action research the-
ory takes the following form: in situation S with salient features
F1, · · · , Fn, outcomesO1, · · · ,On are expected from actions A1, · · · , An. Our
(grounded) theory, as reflected by the formulated research question, is
consistent with this form: we expect vendors that acquire but not analyze
or integrate operation information (S), to improve their product software
processes (O) by means of implementing an instantiation of the SOK in-
tegration template method (A).

4. Principle of Change through Action
As stated by principle 1 and 3, both the researcher and the vendor were
motivated to change the situation at the vendor in terms of operation data
and information use. Planned actionswere designed and taken to achieve
the defined objectives (see section 5.5).

5. Principle of Learning through Reflection
Both the observations made as well as the actions taken were reported
to, and evaluated with the vendor’s employees and management. The
researcher and vendor reflected outcomes of the study by means of semi-
structured interview sessions (see section 5.5).

101

Chapter 5 — Pragmatic Process Improvement through SOK

Identification of SOK
utilization goals and
associated operation
knowledge demands

Utilization PresentationIntegrationAcquisition Identification

Acquisition and mining of
software operation data,
resulting in software
operation information

Integration of operation
information in product
software processes
(e.g. integration method)

Presentation of (integrated)
software operation
information

Structural usage of
software operation
knowledge in software
processes

Figure 5.1 Integration of operation information is part of the SOK life cycle [Van der
Schuur et al. 2010]

Adhering to these principles assisted us in establishing pure validity of our
research approach, which contributes to realistic repetition of the study at sim-
ilar software vendor sites.

5.4 SOK INTEGRATION

We have developed a template method to facilitate integration of acquired SOK
into existing product software processes (target processes). The method is de-
signed to guide vendors in (1) identification of relevant and valuable operation
information, (2) analysis of target processes and their integration environment,
(3) integration of selected information in, and transformation of, target pro-
cesses and (4) presentation of integrated operation information.

When applied successfully, themethod enables software vendors to increase
the extent to which their practices, processes and tools are supported by SOK,
which may result in directed software engineering, informed management
and more intimate customer relationships. Figure 5.3 depicts the method as
a Process-Deliverable Diagram (PDD) [Van de Weerd and Brinkkemper 2008].

In the context of the SOK framework [Van der Schuur et al. 2010], the
SOK integration template method is an implementation of the SOK integra-
tion process, following identification [Van der Schuur et al. 2010] and acquisi-
tion [Van der Schuur et al. 2011b] processes, and preceding presentation and
utilization processes (see figure 5.1). In the SOK acquisition process, software
operation data are acquired, mined and analyzed, resulting in software oper-
ation information that forms input of the method. After acquisition, opera-
tion information is presented on carriers determined during application of the
method; software operation knowledge resulting from interpretation of such
information is used with the frequency determined during method applica-
tion.

102

SOK Integration

Activity A

CONCEPT λ

relation ρ

Template Method M

Activity A'

Sub activity α'

CONCEPT μ'

relation ρ'

Template Method Instantiation M'

«instantiate»

Sub activity β
Sub activity β'1

Sub activity β'2

CONCEPT λ'2

n
m

1

0..*

1

1..*

Sub activity α

CONCEPT μ

CONCEPT λ'1

Figure 5.2 Template method instantiation

5.4.1 Instantiation

The SOK integration template method can be used by software vendors that at-
tempt to integrate operation information with product software processes. For
each target process, a newmethod instance is created, eachwith corresponding
object and activity instantiations. The template method prescribes what (rather
than how) activities and concepts are to be implemented by software vendors.
Therefore, the method is only composed of open activities and concepts [Van de
Weerd and Brinkkemper 2008], which should be instantiated with standard,
open or closed equivalents. To anchor process improvement in the organi-
zation, vendors should instantiate both template activities and concepts con-
sciously and diligently, taking into account daily practices. The method can be
typically applied iteratively, continuously, and potentially in parallel with other
method instantiations. The method’s application duration and frequency de-
pend on integration resources and environment. One or multiple people are
responsible for successful execution of (sub) activities. We assume that both
the software operation information as well as one or more target processes
are available and accessible, before instantiating the method. An instantiation
example is visualized in figure 5.2.

5.4.2 Concepts

The eight template concepts the SOK integration template method refers to,
depicted at the right side of the PDD (see figure 5.3), are detailed in table 5.1.

Each of the concepts referred to by the method, corresponds to at least one
of the (sub) activities of which the template method is composed, which are
detailed in the next section.

103

Chapter 5 — Pragmatic Process Improvement through SOK

Concept
Name Concept Description

actor
A human who demands and utilizes software operation information with a
certain frequency, potentially visualized by a carrier, and participates in one
or more target processes

carrier Medium that can convey and visualize software operation information

integration
evaluation

A systematic determination of merit, worth, and significance of the per-
formed integration of software operation information using criteria against
the set of defined integration objectives involved

integration
objective

Goal of integration of software operation information with a target process
involving one or more integration requirements

integration
requirement

A software operation information integration necessity, demanding an
amount of integration resources

integration
resource

The (human) resources available for performing integration of software op-
eration information

software
operation
information

Information resulting fromdatamining and abstraction of software operation
data acquired from software operating in the field, possibly presented on a
carrier

target
process

A collection of related, structured activities, tasks, tools and ideas that pro-
duce a specific service or product for (a) customer(s), possibly dependent on
other processes or activities, with which software operation information is
integrated

Table 5.1 Concepts of the SOK integration template method

5.4.3 Activities

The method’s activities and sub activities, depicted at the left side of the PDD
(see figure 5.3) are detailed below.

1. Operation information selection
In the first activity of the method, a selection of relevant operation infor-
mation resulting from data mining and abstraction of software operation
data is made. First, the target process is analyzed (Analyze target process).
Questions like ‘Howdoes the process actuallywork?’, ‘How is the process
used?’, and ‘What are process dependencies?’ are answered during this
activity. Analyze target process may be performed from a specific perspec-
tive (e.g. human interaction, data dependencies, etc.), which results in a
comprehensive view of the process. Based on this process analysis, in-
tegration objectives are determined (Determine integration objectives). In
this activity, integration incentives and goals are identified, for example
by defining the role and functioning of the target process after integra-
tion. Second, software operation information demands of the vendor are
identified (Identify operation information demands). Next, operation infor-

104

SOK Integration

mation that is considered relevant and valuable to integrate with the tar-
get process, is selected (Select relevant operation information)2, based on the
process analysis results and identified operation information demands.

2. Integration requirements identification
First, current and future actors involved with the target process and ac-
quisition, integration or presentation of operation information are identi-
fied (Identify SOK actors). Second, it is estimated how often SOK resulting
from integration or presentation of operation information will be used by
actors within the target process after integration (Estimate SOK utiliza-
tion frequency). Third, carriers for presentation of operation information
integrated with the target process are determined (Determine operation
information carriers). Finally, based on the sub activities prior to Identify
integration requirements, integration resources and integration require-
ments for effective integration of acquired software operation informa-
tion are determined. Resulting requirements serve as input for the sub-
sequent ‘Operation information integration’ activity.

3. Operation information integration
The target process is altered to allow integration of relevant software
operation information (Integrate software operation information) selected in
‘Operation information selection’. Integration of selected operation infor-
mation is dependent on, and constrained by, the available integration re-
sources identified earlier (e.g. external data sources, time, people, knowl-
edge, etc.) Operation information integration results are evaluated in the
second activity (Evaluate integration results). If, based on the subsequent
integration evaluation, can be concluded that integration objectives are
met, the result of this activity (and therewith of the SOK integration tem-
plate method) is a process that is effectively supported by acquired op-
eration information. Otherwise, the method is reinitiated by starting the
‘Operation information selection’ activity.

In the following section, we demonstrate instantiation of the template
method.

2If operation information is missing, application of the method can be interrupted to first iterate
through the identification and acquisition phases again (see figure 5.1), and therewith make sure
that desired information is available and accessible.

105

Chapter 5 — Pragmatic Process Improvement through SOK

TARGET PROCESS

SOFTWARE OPERATION
INFORMATION

Integrate operation
information

[integration objectives met][else]

advances *

1..*

demands, utilizes
with frequency
1..* *

integrates with

makes use of,
participates in

1..*

1..*

*

INTEGRATION
EVALUATION

1..*

involves

1..*

1..*

visualizes,
conveys

1

*
demands involves

1..*

1..*

Analyze target process

Determine integration
objectives

Identify operation
information demands

Select relevant
operation information

Identify SOK actors

Estimate SOK
utilization frequency

Determine operation
information carriers

Identify integration
requirements

Evaluate integration
results

CARRIER

INTEGRATION
REQUIREMENT

INTEGRATION
RESOURCE

INTEGRATION
OBJECTIVE

ACTOR

1..*

1..*
uses

1..*

1..*

Operation information selection

Integration requirements
identification

Operation information integration

Figure 5.3 SOK integration template method

106

Three Pragmatic In-the-field Method Instantiations

5.5 THREE PRAGMATIC IN-THE -F IELD METHOD
INSTANTIATIONS

CADComp uses its own software operation data mining and analysis tool
called Denerr, to extract operation information from the acquired CADProd
operation data. Denerr was deployed on CADComp’s intranet, and is accessi-
ble to all CADComp employees. The tool presents acquired error reports, and
provides comprehensive data filtering functionality allowing developers and
maintainers to define constraints on each of the error report properties, for ex-
ample to analyze a particular set of error reports. The SOK integration template
method was used to integrate operation information extracted by the Denerr
tool in three of CADComp’s product software processes: (1) software main-
tenance, (2) software product management and (3) customer support. Each
process was selected based on CADComps needs expressed by its CEO, and
corresponds to a particular SOK framework perspective [Van der Schuur et al.
2010].

Tables 5.2 and 5.3 respectively list how the template activities and concepts
of the integration method were instantiated for each process. As part of the
integration process, adjustments were made to the Denerr tool and to CAD-
Comp product software processes. CADComp employees involved in the tar-
get processes were introduced to newDenerr functionality bymeans of e-mails
describing the new functionality, meetings of both software development and
customer support departments duringwhich new functionality was presented,
and short hands-on evaluation sessions during which new functionality was
demonstrated to and evaluated by particular employees. The SOK integration
template method activities were performed in parallel. All integration activi-
ties were performed by the researchers and were overseen by the CADComp
CEO.

5.5.1 Observations

As stated in table 5.2, weekly one-hour ‘Denerr harvest meetings’ were intro-
duced to frequently analyze and delegate received error reports six months af-
ter initiation of our study. The meetings were organized with twomaintenance
team leaders and one researcher, and were led by the product manager made
responsible for all Denerr-related issues. We attended the first three meetings
in preparation of the interviews. With around 8200 error reports received since
the start of error report acquisition seven months earlier, aims of the first meet-
ing were to (1) investigate which error reports could be considered old or ir-

107

Chapter 5 — Pragmatic Process Improvement through SOK

Tem
plate

activity

Targetprocess
(corresponding

perspective)
Softw

are
m
aintenance

(developm
ent)

Softw
are

productm
anagem

ent(com
pany)

C
ustom

ersupport(custom
er)

Tim
e

period
A
ctivity

instantiation
Tim

e
period

A
ctivity

instantiation
Tim

e
period

A
ctivity

instantiation

A
nalyze

targetprocess

12/09–01/10

Softw
are

m
aintenance

is
dependenton

testing,custom
er

support,custom
er

training
and

sales
feedback:

error
re-

ports
are

justacquired
and

stored,progress
regarding

re-
pairing

softw
are

failures
during

softw
are

m
aintenance

is
notregistered.

C
A
D
Prod

developers
are

notused
to

in-
volving

end-usererrorreportsin
theirm

aintenance
w
ork

01/10

The
softw

are
productm

anagem
entprocessrelieson

oper-
ation

inform
ation

stored
in

custom
ersupport(C

RM
)soft-

w
are,

as
w
ell

as
end-user

feature
requests

and
bug

fix
w
ishesreported

by
salesm

en
in

planning
featuresand

bug
fixes

for
upcom

ing
releases.

Error
reports

are
nottaken

into
account

by
product

m
anagem

ent
in

the
context

of
these

activities

01/10

C
ustom

er
supportis

used
to

answ
er

end-user
questions,

aid
custom

ers
w
ith

softw
are

usage,identify
softw

are
fail-

ures
and

sustain
custom

er
contact.

C
ustom

er
supporters

have
lim

ited
know

ledge
of

the
in-the-field

operation
of

theirsoftw
areatcustom

ers,and
aredependenton

thecus-
tom

er’s
w
illingness

to
explain

its
situation

and
reason

for
calling

D
eterm

ine
integration

objectives

Integration
objectives

(e.g.
accelerated

softw
are

m
ainte-

nance)based
on

analysis
ofthe

im
perfections

ofthe
cur-

rent
softw

are
m
aintenance

process
(e.g.

process
depen-

denciesslow
ing

dow
n
the

m
aintenance

process)

Integration
objectives

(e.g.directed
softw

are
product(re-

lease)m
anagem

ent)w
ere

based
on

analysis
ofthe

im
per-

fectionsofthe
currentsoftw

are
productm

anagem
entpro-

cess(e.g.lim
ited

use
ofoperation

inform
ation)

Integration
objectives

(e.g.
increased

custom
er

intim
acy)

w
ere

based
on

analysisofthe
im

perfectionsofthe
current

custom
ersupportprocess(e.g.little

a
prioriknow

ledge
of

custom
er’sreason

forcalling)

Identify
operation

inform
ation

dem
ands

N
o
significantdem

and
identification

w
asperform

ed.Soft-
w
are

engineersrequested
form

aintenance
statusinform

a-
tion

oferrorreportsby
theirow

n
efforts

D
uring

evaluation
ofthe

D
enerr

tool,productm
anagers

and
C
EO

requested
foraggregated

operation
inform

ation
and

softw
are

operation
trends

Through
shorttalks

w
ith

custom
er

supporters,operation
inform

ation
supporting

identification
of

particular
cus-

tom
ersw

asidentified
asinform

ation
requested

for

Selectrelevantoperation
inform

ation

Error
reportm

eta
inform

ation
w
as

identified
as

relevant
inform

ation,based
on

inform
ation

dem
ands

of
softw

are
engineersasw

ellasanalysisofthe
currentsoftw

are
m
ain-

tenance
process

A
ggregated

errorreportpropertiesand
softw

areoperation
trends

w
ere

identified
as

relevant
operation

inform
ation

based
on

inform
ation

dem
ands

of
product

m
anagers

as
w
ellas

analysis
ofthe

currentsoftw
are

productm
anage-

m
entprocess

O
peration

inform
ation

w
hich

enablesidentification
ofcus-

tom
ers

w
as

identified
as

relevant
operation

inform
ation

based
on

inform
ation

dem
andsofcustom

ersupportersas
w
ellasanalysisofthe

currentcustom
ersupportprocess

Identify
SO

K
actors

01/10

A
ctorsw

ereselected
from

theem
ployeesthatrequested

for
operation

inform
ation,orw

ere
appointed

by
C
A
D
C
om

p’s
C
EO

02/10

A
ctorsw

ereselected
from

theem
ployeesthatrequested

for
operation

inform
ation,orw

ere
appointed

by
C
A
D
C
om

p’s
C
EO

01/10–02/10

A
ctorsw

ereselected
from

theem
ployeesthatrequested

for
operation

inform
ation,orw

ere
appointed

by
C
A
D
C
om

p’s
C
EO

Estim
ate

SO
K

utilization
frequency

By
analyzing

the
frequency

of
current

softw
are

m
ainte-

nance
processactivities,itw

asestim
ated

thatSO
K
w
ould

be
used

atleastonce
a
w
eek

By
analyzing

the
frequency

of
current

softw
are

product
m
anagem

entprocessactivities,itw
asestim

ated
thatSO

K
w
ould

be
used

atleastevery
Scrum

sprint

By
analyzing

the
frequency

ofcurrentcustom
er

support
processactivities,itw

asestim
ated

thatSO
K
w
ould

beused
potentially

w
ith

every
custom

ersupportcall

D
eterm

ine
operation

inform
ation

carriers

Based
on

(m
eta)operation

inform
ation

dem
andsand

feed-
back

from
C
A
D
C
om

p
em

ployees,a
D
enner

error
report

listview
w
ith

statusinform
ation

w
asselected

ascarrier

Based
on

(m
eta)operation

inform
ation

dem
andsand

feed-
back

from
C
A
D
C
om

p
em

ployees,a
D
enneraggregated

er-
rorreportview

w
asw

asselected
ascarrier

Based
on

(m
eta)

operation
inform

ation
dem

ands
and

feedback
from

C
A
D
C
om

p
em

ployees,D
enner

custom
er-

specific
errorreportview

sw
ere

selected
ascarrier

Identify
integration

requirem
ents

Based
on

results
of

previous
activities

as
w
ellas

discus-
sionsw

ith
C
A
D
C
om

p’sC
EO

,creating
and

introducing
er-

rorreportlabeling
functionality

w
ereidentified

asintegra-
tion

requirem
ents.

Based
on

results
of

previous
activities

as
w
ell

as
dis-

cussions
w
ith

C
A
D
C
om

p’s
C
EO

.
A
lso,

it
becam

e
clear

that
creating

and
introducing

error
report

aggregation
functionality

w
ere

identified
as

integration
requirem

ents.
A
lso,itbecam

eclearthatfrequentm
eetingshad

to
beorga-

nized
foranalyzing,discussing

and
delegating

aggregated
errorreports

Extending
the

errorreportform
atand

D
enerrfunctional-

ity
w
ith

custom
er-specific

elem
ents

w
ere

identified
as

in-
tegration

requirem
ents,based

on
resultsofpreviousactiv-

itiesasw
ellasdiscussionsw

ith
C
A
D
C
om

p’sC
EO

Integrate
operation

inform
ation

02-10–03/10

D
enerr

w
as

extended
to

show
error

reportstatus,people
responsiblew

ereassigned
and

team
leaderresponsibilities

w
ere

expanded

03/10–09/10

Various
graphs

have
been

designed
and

im
plem

ented
(e.g.,error

cause
m
odules,error

reportsubm
ission

tim
e,

etc.),as
w
ellas

an
aggregation

view
containing

the
m
ost

frequentoccurring
errors.A

lso,‘D
enerrharvestm

eetings’
w
ere

introduced
to

frequently
analyze

and
delegate

re-
ceived

errorreports

02/10–06/10

IP-based
location

determ
ination

w
as

im
plem

ented
by

m
eansofIP

geolocation
library,custom

er-specificerrorre-
portanalysis

view
w
as

created,integration
w
ith

external
toolsw

asrealized

Evaluate
integration

results

A
fterdeploym

entofnew
D
enerrfunctionality,shorteval-

uation
talks

w
ere

held
w
ith

the
involved

softw
are

engi-
neers

A
fterdeploym

entofnew
D
enerrfunctionality,shorteval-

uation
talks

w
ere

held
w
ith

the
involved

product
m
an-

agers

A
fterdeploym

entofnew
D
enerrfunctionality,shorteval-

uation
talks

w
ere

held
w
ith

the
involved

custom
er

sup-
porters

Table
5.2

Tem
plate

activity
instantiations

108

Three Pragmatic In-the-field Method Instantiations

Template
concept

Target process (corresponding perspective)
Software maintenance (development) Software product management

(company)
Customer support (customer)

actor 2 software engineers, 4 team leaders,
3 product managers

3 product managers, CEO 3 customer supporters, 2 software engi-
neers

carrier Error report list view with status infor-
mation

Statistics, graphs, aggregation error re-
ports view

Customer-specific error report view, ac-
quisition, mining and analysis of sub-
jective operation information (e.g. end-
user comments)

integration
evaluation

Employees suggested that error reports
could (and should) be automatically be
assigned a status, particularly when at
least 95% of the equivalent error reports
is assigned one and the same status,
to streamline maintenance work and
reduce repetitive administration tasks.
Also, it was suggested to tighten in-
tegration of acquired operation knowl-
edge with the software maintenance
process by keeping track of error re-
ports status change(r)s over time, to an-
alyze past and delegate future mainte-
nance tasks. Both ideas were imple-
mented. Finally, it was suggested to in-
tegrate error report data with bug track-
ing software, to align error reports with
identified bugs.

Initially, the graph- and aggregation
views were always generated for all er-
ror reports. Later, it appeared thatmore
specific queries were requested for gen-
erating these views, resulting in views
generated for error reports with a par-
ticular build number, status or IP ad-
dress. Therefore, both views were im-
plemented as a search result view. Also,
it appeared convenient to delegate er-
rors to teams using ‘error report bundle’
URLs instead of URLs to individual re-
ports: teams are provided with insight
in the scope and ‘in-the-field severity’ of
software failures. ‘Bundle URLs’ were
created to support this form of commu-
nication.

A basic customer view was first accessi-
ble via the detail view of each individ-
ual error report. Supporters made very
little use of this customer view. A global
customer searchwas implemented to al-
leviate the task of associating customer
support details with operation informa-
tion and tighten integration of opera-
tion information in the customer sup-
port process. Also, it was suggested
to extend CADComp’s Salesforce ‘cus-
tomer prepsheet’ with operation infor-
mation of the particular customer, to
provide salesmen and supporters with
insight in the customer’s recent in-the-
field software operation

integration
objective

Increase error report status awareness;
enable error report status updating
andmonitoring; faster softwaremainte-
nance

Gain insight in trending error report
characteristics; directed software prod-
uct (release) management

Gain insight in software operation at
particular customers; increased cus-
tomer intimacy

integration
requirement

Labeling error reports upon receive
with ‘New’ status, visualize labels
within Denerr tool, implement label
update functionality

Adding aggregated error report view
and trending graphs to Denerr tool

Extending error report format and Den-
errmining, analysis and reporting func-
tionality (include customer profile and
comment data)

integration
resource

1 software engineer, 3 team leaders,
1 product manager

1 software engineer, 3 team leaders,
1 product manager

1 software engineer, 3 team leaders,
1 product manager

software
operation
information

Error report status labels Aggregated operation information,
software operation trends

Operation information which enables
identification of customers, such as IP
address, customer and user name, li-
cense number, etc.

target
process

Software maintenance Software product management Customer support

Table 5.3 Template concept instantiations

relevant and put their status to ‘Ignore’, and therewith get a recent, realistic
view of the status of all error reports, (2) delegate each aggregated report in the
resulting top 10 of aggregated error reports to a software development team,
and (3) investigate reports received in the last week to identify potential bugs
introduced recently.

During the second and third meeting, respectively, the status of tasks iden-
tified during first harvest were discussed again with the team leaders, and re-
ports with automatically assigned statuses (see table 5.3) were verified to check
if the correct status was assigned. Based on our attendance of the meetings,
three main observations were made. First, during analysis of the error reports,
employees were surprised about the amount of reports being submitted, par-
ticularly from versions that were considered old versions by the employees. As
a consequence, questions like ‘When can we ignore error reports originating from
a particular release build?’ and ‘To which extent is it desirable to see the number of
error reports received from a new software product significantly increase month over

109

Chapter 5 — Pragmatic Process Improvement through SOK

Interviewee
type

Software
maintenance

Software product
management

Customer
support

Years experience
in IT (average)

Senior
supporters 3 6.3

Senior software
engineers 2 12

Team leaders 3 8.5
Product
managers 3 16.5

CEO 1 25

Table 5.4 Interviewees per target process

month?’ were discussed. Second, although employees understood the signif-
icance of the reports (‘Those error reports represent the unhandled exceptions that
are experienced by our end-users)’, occasionally, insufficient data was available to
gain a clear understanding of an end-user’s software operation. As a result,
end-user comments accompanying the error reports were frequently analyzed
to identify the usage history and goals of end-users. Also, team leaders for-
mulated more accurate operation information demands. Third, we observed a
demand for fine-grained report analysis. After aggregation and statistic views
were implemented for all error reports, employees desired to show these views
only for reports originating from release builds, internal builds and per (build)
version. The aggregation view was used to quickly identify which bugs were
not under investigation for the current sprint. Bug fix work items were created,
and engineers were managed based on the aggregation view.

5.5.2 Experience Evaluation

Twelve semi-structured interviews consisting of 34 questions divided over
seven sections3 (Integration Objectives, Process Improvement, Integration Chal-
lenges, Return On Investment, Future, Lessons Learned and Final Remarks), were
performed after application of the SOK integration template method. Inter-
views were conducted with CADComp employees that are involved in a par-
ticular product software process (see table 5.4), to reflect on the SOK integration
process and identify lessons learned. The method, tables 5.2 and 5.3 as well as
observations of the attended Denerr harvest meetings served as input for the
interviews. The interviews took 1.5 hour on average and were conducted over

3Interview questions can be found in appendix B.

110

Three Pragmatic In-the-field Method Instantiations

Area Software maintenance Software product management Customer support
Integration
objectives

Quickly identify software failures most
customers are experiencing frequently,
faster improve software quality and per-
formance, increase customer satisfaction

Gain more precise insight in software
failures and weak spots in the software
code base, efficiently increase software
quality

Increase customer intimacy, increase ef-
ficiency of product software processes,
get insight in software usage of cus-
tomers that do not call for support

Process
improvements

Software maintenance (e.g. bug priori-
tization): time was saved because soft-
ware failures are faster reproducible,
better insight in and awareness of in-the-
field software operation and quality was
gained

Software maintenance, software prod-
uct management: processes have been
accelerated because software failures are
bundled (clustered) and prioritized au-
tomatically and discussed on a weekly
basis (instead of manual, subjective
bundling)

Software maintenance, customer sup-
port: more detailed information of in-
the-field software operation is available
which helps to faster determine failure
causes in collaboration with the soft-
ware development department

Integration
challenges

Procrastination of developers during
identification and reparation of software
failures based on software operation in-
formation, copingwith large amounts of
acquired operation information (identi-
fying what information is most relevant
in which situations and cope with diver-
sity of information during analysis)

Assigning responsibilities to employees
in involving operation information in
product software processes, while en-
suring a balance between (1) the liberty
of an employee and its team, and (2) im-
proving the performance and efficiency
of a department as a whole

Based on large amounts of acquired op-
eration information, correctly determine
what are actual causes of software fail-
ures and what additional (operation en-
vironment) information is needed to do
so if those causes can not be correctly de-
termined

Integration
side effects

Operation information can be used to
convince development management in
taking release planning decisions, ex-
ception handling mechanism of the soft-
ware was extensively refactored to in-
crease software quality

Information on software usage is also
gained, e.g. insight in a customer’s soft-
ware update policy can be gained

Customers feel taken seriously, espe-
cially when they are contacted after pro-
viding information regarding their soft-
ware operation

Return on
Investmenta

Software quality (robustness) increase of
25%, decrease of software maintenance
time of 50%b

Unhandled exception occurrence de-
crease of 40%, customer satisfaction in-
crease of 25%

Customer support time decrease of 50%,
software quality increase of 25%

Main future
challenge

Knowing what are the functional re-
quirements of the main customer (end-
user) types, and to ensure that relevant,
reliable operation information is ex-
tracted while data acquisition increases

Realizing a customer-specific approach
in terms of software licensing and cus-
tomer support, and finding an opti-
mal balance between steering processes
through operation information, and sus-
taining a leading role in industry by im-
plementing a software product vision

Making sure that operation information
is used and prioritized as effective as
possible, while data acquisition sources
and resulting operation data amounts
increase

aAll percentages are averages of rough estimations made by interviewees
bBefore operation information integration, software failures were frequently unreproducible

and were never repaired

Table 5.5 Interview results

a period of 68 days. Interview results of the first five sections are summarized
in table 5.5; lessons learned are presented separately in section 5.5.3.

Although increase of software qualitywas considered a significant return on
investment, a particular rival hypothesis regarding software quality increase
was postulated often during the action research study and the reflective in-
terviews. Various employees pondered over the actual cause of the decrease of
received error reports: had the software quality actually been improved, or was
there a random downward trend in software usage (or, more particularly, error
report submission)? Error report submission history (see figure 5.4) indicates
that software quality actually has been improved during period our study was
conducted. While the number of submitted error reports increased about lin-
early from February, 2009 until June, 2010, this trend was broken in September,
2010 (the drop during July andAugust couldwell caused by summer vacation).
In this month, a new major release of CADProd was released and delivered to
customers, causing a slight increase in number of CADProd users.

111

Chapter 5 — Pragmatic Process Improvement through SOK

Figure 5.4 CADProd error report submission decrease of about 45% during our study

5.5.3 Lessons Learned

The lessons learned listed below have been identified based on interview ses-
sion results as well as observations during our presence at the vendor.

1. Integration Processes Should be Lean
The effects of integrating operation information in product software pro-
cesses should not be underestimated. Additional processes with corre-
sponding responsibilities may be required to ensure effective and contin-
uous integration of acquired operation information (for example, regis-
tering software maintenance tasks based this information and delegating
those tasks to the right employee(s)). Vendors should ensure that addi-
tional (administrative) tasks caused by integration of operation informa-
tion are handled in a pragmatic and lean way: additional administration
may negate the time gain caused by integration of operation information.

2. Integration Responsibilities and Results Should Be Evangelized
An internal manager that has affiliation and experience with
development-, business- and customer-related processes should be
made responsible for integration of acquired operation information with
those processes, since acquired operation information will not integrate
automatically: during our action research study at CADComp, we
observed that making integration of operation information everyone’s
shared responsibility, is effectively equivalent to making no one respon-

112

Three Pragmatic In-the-field Method Instantiations

sible. Inter alia, such a manager should ensure that the potential and
results of the ‘SOK-supported’ process both are communicated clearly
and frequently: this increases awareness and acceptance of the new
way of working, both among employees as well as at management level.
Evangelism of SOK integration potential and results is key in integrating
operation information.

3. SOK Integration Opens Up Black Boxes
In line with expectations of CADComp employees, integration of ac-
quired operation information improved software maintenance, software
product management and customer support processes: the time needed
to reproduce software failures was decreased, deeper insight into (and
awareness of) in-the-field software operation and end-user behavior was
gained, and customer satisfaction was increased. Operation information
is used for prioritization of fixes for software failures that are actually ex-
perienced by end-users, which may decrease the time required for soft-
ware maintenance and customer support. However, as became clear after
integrating CADProd operation information with CADComp processes,
unanticipated improvements may result from effective SOK integration.
For example, since developers aremade aware of in-the-field software op-
eration quality, SOK integration may result in a more customer-central,
pro-active development mentality (‘build what the customer will use, before
the customer asked for it’). Also, integration of operation information in
product software processes may clarify and speed-up interdepartmental
communication as well as communication between employees and man-
agement. Improvement areas that were unnoticed before, are highlighted
as such after (and potentially as a side effect of) SOK integration.

4. Continuous Refinement of SOK Integration Objectives and Requirements Leads to
Optimization of Integration Results

Integration results are dependent on integration objectives and require-
ments. Since product software processes and activities change, as well as
software operation environments and customer demands, integration ob-
jectives and requirements should be evaluated and refined continuously
to correspond to both a vendor’s product strategy as well as a vendor’s
customers needs. On the long term, software vendors should attain a bal-
ance between using operation information to steer their product software
processes, and adhering to their product vision and strategy.

113

Chapter 5 — Pragmatic Process Improvement through SOK

These lessons learned may serve as a guiding substrate for similar vendors
in integrating information of in-the-field software operation.

5.5.4 Threats to Validity

The validity of the study results is threatened by several factors. First, construct
validity of our study is threatened by the fact that the researchers conducting
the study were involved in objects of study (e.g. product software processes
implemented at CADComp): observations or conclusions could be biased. This
threat is addressed by adhering to the principles for canonical action research
elicited by Davison et al. [Davison et al. 2004] (see section 5.3.2). For example,
the researchers and software vendor being studied agreed on a research plan
describing the shared objectives and data that was to be collected during the
study. Also, both the researcher and the vendor reflected upon the outcomes
of the study by means of semi-structured interview sessions.

Second, primary threat to the internal validity of the study is the relation be-
tween the instantiation of the SOK integration template method at CADComp
and the subsequent software quality increase perceived byCADComp intervie-
wees. Although it is a challenge to isolate the particular influence of template
method instantiation on improvement of CADComp’s product software pro-
cesses, we regard CADComp’s error report submission history (as analyzed
in section 5.5) as representative of the extent to which CADComp’s software
maintenance, software product management and customer support processes
are improved through instantiation of the SOK integration template method.

Third, external validity is threatened by the fact that the SOK integration
template method was instantiated at only one software vendor, during a lim-
ited period of time. While we acknowledge this threat, we regard the study as
repeatablewith the same results, presuming similar circumstances (e.g. similar
operation information, processes, software vendors, etc.)

5.6 CONCLUSIONS AND FUTURE WORK

All too often in industry, software vendors acquire large amounts of valuable
software operation data, without effectively using these data in advancement
of their processes. Operation information extracted from operation data is not
structurally integrated with product software processes, leaving vendors in the
dark regarding in-the-field software performance, quality and usage, as well as
end-user feedback. Vendors are in need of an approach that supports them in
accomplishing such integration.

114

Conclusions and Future Work

We presented a template method that aids product software vendors in (1)
identification of relevant and valuable operation information, (2) analysis of
target processes and their integration environment, (3) integration of selected
information in, and transformation of, target product software processes, and
(4) presentation of integrated operation information. During an action research
study of ten months performed at a European software vendor, the template
method was instantiated to improve the vendor’s product software processes
through integration of acquired operation information.

Evaluation of the study shows that typical product software processes like
software maintenance, software product management and customer support
benefit from structural integration of operation information in terms of soft-
ware quality, operation knowledge and customer intimacy. Based on this eval-
uation, four lessons learned are identified that may serve as a guiding sub-
strate for similar vendors, in integrating information of in-the-field software
operation with their product software processes. We regard the SOK integra-
tion template method and lessons learned as an adequate early answer to the
main research question of this paper, ‘How can product software processes effec-
tively be improved with acquired information of in-the-field software operation?’. We
demonstrated how product software processes can be improved pragmatically
butmeasurably, without adhering to strict requirements from cumbersomema-
turity models or process improvement frameworks.

Future work will include additional action research or case studies to instan-
tiate and evaluate the SOK integration template method in industry, and there-
with further demonstrate its soundness and utility. Further research is also
needed to mature the identified lessons learned towards generic guidelines or
principles for effective integration of software operation information.

115

Chapter 5 — Pragmatic Process Improvement through SOK

116

6
Leveraging Software Operation Knowledge

for Maintenance Task Prioritization

ABSTRACT

Knowledge of in-the-field software operation is acquired by many software-
producing organizations nowadays. While vendors are effective in acquiring
large amounts of valuable software operation information, many are lacking
methods to improve their software processes with such information. In this
paper, we attempt to improve the software maintenance process by proposing
a software operation summary: an overview of a vendor’s recent in-the-field
software operation, designed to support software processes by providing soft-
ware operation knowledge. Particularly, we strive to improve prioritization of
software maintenance tasks by fostering the reach of consensus between in-
volved employees on such prioritization. Through an extensive survey among
product software vendors in the Netherlands, we confirm the need for a soft-
ware operation summary, and identify which crash report data are considered
relevant as a basis for the summarywhen it is used for prioritization of software
maintenance tasks. By means of a case study at a European software vendor, a
software operation summary composed using crash report data is empirically
evaluated. Results confirm the lack of consensus experienced between engi-
neers and managers, and illustrate the value of the summary in fostering reach
of consensus between employee roles, particularly in preparation of sprint plan-
ning and bug fixing activities.∗

∗This has been published as Sending Out a Software Operation Summary: Leveraging Software Oper-
ation Knowledge for Prioritization ofMaintenance Tasks in the proceedings of the 6th International Con-

117

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

6.1 INTRODUCTION

One of the most time-consuming and challenging tasks in software mainte-
nance is to reach consensus on the prioritization of softwaremaintenance tasks.
Many factors are involved in the process of software maintenance task prioriti-
zation, such as the number and names of customers that have reported a par-
ticular software failure, the severity and frequency of the failure as well as a
software vendor’s roadmap and available resources [Lehtola and Kauppinen
2006]. All too often, prioritization discussions and decisions of smaller soft-
ware vendors are led by strong emotions of employees involved in the priori-
tization process, rather than by (f)actual knowledge. Employees may strongly
focus on one particular aspect of software maintenance, and for example base
their prioritization preferences on the interests and wishes of a large customer
or on their image of the software code quality. Many software vendors are
lacking in methods to improve such processes with objective data and knowl-
edge, for example knowledge of in-the-field operation (and failures) of their
software (i.e., software operation knowledge or SOK) [Van der Schuur et al.
2011c]. As a consequence, reaching consensus on software maintenance task
prioritization frequently is a time-consuming process, resulting in flawed pri-
oritization decisions, unsatisfied customers and significant technical debt. The
ISO standard on the softwaremaintenance process [ISO/IEC 2006] defines soft-
ware maintenance as comprised of six activities, being Process Implementation;
Problem and Modification Analysis; Modification Implementation; Maintenance Re-
view/Acceptance; Migration; Retirement. In the context of this standard, software
maintenance task prioritization activities as well as reaching consensus on such
prioritization are covered by the Process Implementation activity.

The main contribution of this paper is the Software Operation Sum-
mary (SOS) concept: an overview of recent in-the-field software operation,
which can be used for improvement of software processes. We improve soft-
waremaintenance process implementations by fostering the reach of consensus in
software maintenance task prioritization through this software operation sum-
mary concept.

The main research question is therefore ‘Can prioritization of software mainte-
nance tasks be improved through the concept of a software operation summary?’, which
is answered through an extensive software maintenance survey held among
product software vendors in the Netherlands. Based on survey results, we (1)
confirm the lack of consensus on software maintenance prioritization experi-

ference on Software Process and Product Measurement (MENSURA 2011) [Van der Schuur et al.
2011c]. It is co-authored by Slinger Jansen and Sjaak Brinkkemper.

118

Software Operation Summary

enced between engineering, management, and customer support, (2) establish
the need for an SOS by these employee roles, and (3) identify which crash re-
port data are considered relevant as a basis for an SOS that fosters reaching con-
sensus on prioritization of software maintenance tasks [ISO/IEC 2006, Pigoski
1997]. To qualitatively support survey results, we conducted a case study at
a European software vendor, through which we composed an SOS based on
crash report data and empirically evaluated its soundness and validity.

This paper is organized as follows. Section 6.2 further details the SOS con-
cept. Section 6.3 describes our research approach; section 6.4 details survey
structure and contents. In section 6.5, survey results are analyzed, while in
section 6.6 the case study results are presented. Next, we discuss research limi-
tations (section 6.7) and place our work in context (section 6.8). Finally, conclu-
sions and future work are presented in section 6.9.

6.2 SOFTWARE OPERATION SUMMARY

We define a software operation summary as an overview providing knowledge of
recent in-the-field software operation, based on acquired software operation informa-
tion. The operation information needed for composition of the summary can
be acquired by vendors from their software operating in the field, in a generic
manner [Van der Schuur et al. 2011b]. Both the operation information on which
an SOS is based, as well as the operation knowledge provided by the summary
are related to the in-the-field performance, quality or usage of the software, or
to the feedback of end-users of the software [Van der Schuur et al. 2011c]. An
abstract SOS is provided in figure 6.1.

The software operation history, which forms themain component of the SOS,
can be complemented with operation meta data such as the operation history
timespan and software operation objectives that have been defined. As we
show later in this paper, frequent use of a software operation summary (partic-
ularly, the software operation knowledge it provides) may foster reaching con-
sensus between employees on software process issues. For example, it helps
achieving consensus on prioritization of software maintenance tasks (i.e., de-
termining when which bugs should be fixed, by whom).

In industry, at least three types of employees are involved in software main-
tenance activities: customer supporters (filing bug reports based on feedback of
customers experiencing in-the-field software failures), software engineers (de-
veloping and testing fixes for the reported failures) and development / product
managers (guiding the maintenance process, being responsible for prioritizing
maintenance tasks). Each of these employees may advocate a particular focus

119

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

Software Operation Summary
SOFTWARE OPERATION HISTORY

Performance
(throughput, latency, ...)

Quality
(#errors, #crashes, ...)

Usage
(UI traces, #clicks, ...)

End-user feedback
(satisfaction, ratings, ...)

Timespan (start time, end time, duration, ...)
Sources (IP addresses, customer names, ...)
Objectives (process perspectives, ...)

OPERATION META DATA

...

Figure 6.1 Software operation summary concept

in prioritizing software maintenance tasks, and strive to improve a particular
aspect within this focus. Customer supporters may be focused on increasing
the satisfaction of end-users using the software. When prioritizing software
maintenance tasks, customer supporters prioritize bugs that are experienced
by the most influential and demanding customers. Software engineers, on the
other hand, may be concerned with the quality of their software architecture
and therefore prioritize bugs that are caused by poor or non-standard software
design. Third, development / product managers may strive to increase the ef-
ficiency of the maintenance process itself, by maximizing the number of com-
pleted maintenance tasks and minimizing task duplication. By mapping those
three employee foci to the SOK framework [Van der Schuur et al. 2011c], three
perspectives on software maintenance task prioritization can be observed. See
table 6.1.

In this paper, it is identified which crash report data are considered relevant
as a basis for an SOS that fosters reaching consensus on prioritization of cor-
rective and adaptive maintenance tasks [ISO/IEC 2006, Pigoski 1997]. Crash
report data are successfully used by Microsoft [Microsoft Online Crash Analy-
sis 2005, Microsoft Error Reporting 2006], Apple [Mac OS X Reference Library
2010], Canonical [Ubuntu Wiki 2010], and Google [Google Breakpad 2010] to
improve their software architecture quality, end-users satisfaction and mainte-
nance process efficiency [Glerum et al. 2009]. Which data are considered rele-
vant, however, is situational and depends on many factors, such as the type of
product, the type of customers and the type of employee using the data.

120

Research Approach

Engineering Management Support

Employee role Software
engineer

Development /
Product manager

Customer
supporter

Maintenance
focus

Software
architecture

Maintenance
process End-user

Improvement
aspect Quality Efficiency Satisfaction

SOK framework
perspective Development Company Customer

Table 6.1 Perspectives on software maintenance task prioritization

6.3 RESEARCH APPROACH

We structured the research approach using the SOK integration template
method [Van der Schuur et al. 2011a]. The method is designed for integration
of software operation information in software processes (e.g. software main-
tenance). The instantiated method details the main research activities and re-
lated concepts, and therewith describes how our study can be repeated [Kit-
chenham and Pfleeger 2002]. It is presented as a process-deliverable diagram
(PDD) [Van deWeerd and Brinkkemper 2008] in figure 6.2. Significant research
activities and concepts are described below and in table 6.2, respectively.

Operation information selection
The first activity is concerned with determining which software opera-
tion information in crash reports is considered relevant in supporting
the software maintenance task prioritization process through a soft-
ware operation summary. First, we acquired empirical understanding
of this process by analyzing software maintenance task prioritization
processes in industry (see section 6.2, as well as [Van der Schuur et al.
2011a]) and answering questions like ‘How is the process implemented in
the organization?’ and ‘What are process dependencies?’ (Analyze target
process). Next, we used industry experiences and literature study results
to identify issues with prioritization of software maintenance tasks, on
which we based integration objectives (Identify task prioritization issues
in industry and literature). Third, we categorized crash report data orig-
inating from various crash reporters (Categorize crash report data; see ta-
ble 6.4) to identify software operation information demands of vendors
acquiring crash reports. Based on the process analysis results and identi-
fied information demands, we have designed and conducted a software

121

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

Identify maintenance task
prioritization actors in industry

Analyze survey results

Identify relevant software
operation summary data

Identify requirements for
operation summary integration

ACTOR

SOFTWARE
OPERATION SUMMARY

Categorize crash report data

Create and conduct maintenance
task prioritization survey

[integration objectives met]

Identify task prioritization issues
in industry and literature

[else]

*

1..*

demands, utilizes
with frequency

1..* *

integrates with

makes use of,
participates in

1..*

1..*

*

INTEGRATION
OBJECTIVE

INFORMATION
ANALYSIS RESOURCE

SOFTWARE OPERATION
KNOWLEDGE

1..*

1..*

1..*

displays,
visualizes

1..*

* demands involves

1..*

1..*

Analyze maintenance prioritization
processes in industry

SOFTWARE MAINTENANCE
TASK PRIORITIZATION

SOFTWARE OPERATION
INFORMATION

1..*

1..*
uses

advances

SOFTWARE ARCHITECTURE
QUALITY INCREASE

MAINTENANCE
EFFICIENCY INCREASE

END-USER SATISFACTION
INCREASE

SOFTWARE
ENGINEER

DEVELOPMENT
MANAGER

CUSTOMER
SUPPORTER

1..*

1..*

Operation information selection

Integration requirements
identification

Operation information integration

Integrate operation
information

Evaluate integration results INTEGRATION
EVALUATION

provides

1..*

1..*

supports

investigates1..* 1
1

1..*

investigates
SURVEY

CASE STUDY

1
1

Figure 6.2 Research approach based on SOK integration template method

maintenance task prioritization survey (Create and conduct maintenance
task prioritization survey; see section 6.4).

Integration requirements identification
concerns identifying requirements for successful integration of the soft-
ware operation summary with software maintenance task prioritization
processes. First, we identified actors involved with software mainte-
nance task prioritization by visiting software vendor sites (Identify main-

122

Research Approach

Concept name Concept description

actor
A person who demands and utilizes software operation information with a certain fre-
quency, potentially visualized by a software operation summary, and participates in one
or more software maintenance task prioritization processes

customer
supporter An actor providing (technical) assistancewith one ormore software products or services

development
manager An actor managing software engineers of a software development department

end-user
satisfaction
increase

One of the integration objectives: an increase of the extent to which end-users believe
the software available to them meets their requirements

information
analysis
resource

A physical or virtual entity of limited availability needed to analyze and interpret soft-
ware operation information and gain software operation knowledge

integration
evaluation

A systematic determination ofmerit, worth, and significance of the performed integration
of software operation information using criteria against the set of defined integration
objectives involved

integration
objective

Goal of integration of software operation information with software maintenance task
prioritization involving software operation knowledge; generalization of the software
architecture quality increase, maintenance efficiency increase and end-user satisfac-
tion increase integration objectives

maintenance
efficiency
increase

One of the integration objectives: an increase of the extent to which wasted time and
effort in the software maintenance task prioritization process are avoided

software
developer

An actor concerned with facets of the software development process, primarily (but
wider than) design and coding.

software
maintenance
task
prioritization

The process of assigning priorities to software maintenance tasks by one or more actors,
which is part of the Process Implementation activity of the ISO standard on the software
maintenance process [ISO/IEC 2006]

software
operation
information

Information resulting from data mining and abstraction of software operation data ac-
quired from software operating in the field, possibly presented on a software operation
summary

software
operation
knowledge

Knowledge of in-the-field performance, quality and usage of software, and knowledge of
in-the-field end-user software experience feedback [Van der Schuur et al. 2010]

software
operation
summary

An overview of recent in-the-field software operation. Based on recent software opera-
tion information, the summary provides software operation knowledge

software
architecture
quality
increase

One of the integration objectives: an increase of the extent to which software is designed
well, and how well the software conforms to that design

Table 6.2 Names and descriptions of significant concepts

tenance task prioritization actors in industry; see table 6.1). Next, we ana-
lyzed survey results, for example to estimate how often software opera-
tion information would be used by the identified actors (Analyze survey
results; see section 6.5). Based on survey results and prior sub activities,
relevant crash report data on which a software operation summary can
be based, were identified (Identify relevant software operation summary data;
see section 6.5.4). Finally, requirements for successful integration of the
summary in software maintenance task prioritization processes were

123

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

identified (Identify requirements for operation summary integration; see sec-
tion 6.6). For example, a requirement could be that valuable software
operation knowledge is gained after integration of acquired operation
information, demanding information analysis resources).

Operation information integration
concerns integration of the software operation summary with software
maintenance task prioritization processes. We conducted a case study
at a European software vendor to compose and evaluate a software oper-
ation summary. First, the software maintenance task prioritization pro-
cess was altered to allow integration of relevant software operation in-
formation selected in ‘Operation information selection’ (Integrate software
operation information; see section 6.6). Next, as part of the case study, inte-
gration results were evaluated (Evaluate integration results; see section 6.6).
If, based on a subsequent integration evaluation, can be concluded that
integration objectives are met, the result of this activity is a software
maintenance task prioritization process that is effectively supported by
acquired operation information. Otherwise, the method is reinitiated
with the ‘Operation information selection’ activity.

This paper’s main research question (‘Can prioritization of software mainte-
nance tasks be improved through the concept of a software operation summary?’) is
answered based on evaluation of the following six propositions:

P1 A software operation summary is expected to integrate with current
software maintenance practices.

P2 A software operation summary is expected to increase knowledge
of software architecture quality.

P3 A software operation summary is expected to increase knowledge
of end-user satisfaction.

P4 A software operation summary is expected to increase knowledge
of maintenance process efficiency.

P5 A software operation summary is expected to foster achieving con-
sensus on software maintenance task prioritization.

P6 A software operation summary is expected to reduce the time
needed for software maintenance task prioritization.
The propositions are evaluated based on results of the softwaremaintenance

task prioritization survey we conducted.

124

Research Approach

Se
ct
io
ns

Q
ue

st
io
ns

Pr
op

os
iti
on

s

G
en

er
al

1.
H
ow

m
an

y
pe

op
le

ar
e
em

pl
oy

ed
at

yo
ur

co
m
pa

ny
?
[L
es
st

ha
n
5;

5
to

10
;1

0
to

20
;2

0
to

50
;5

0
to

10
0;

10
0
to

20
0;

M
or
e
th
an

20
0]

N
/A

2.
H
ow

m
an

y
en

d-
us

er
sa

re
us

in
g
so
ftw

ar
e
th
at

is
pr
od

uc
ed

by
th
e
co
m
pa

ny
yo

u
ar
e
em

pl
oy

ed
by

?
[L
es
st

ha
n
50

;5
0
to

20
0;

20
0
to

50
0;

50
0
to

2,
00

0;
2,
00

0
to

10
,0
00

;
10

,0
00

to
10

0,
00

0;
M
or
e
th
an

10
0,
00

0]
N
/A

3.
H
ow

m
an

y
cr
as
h
re
po

rt
sa

re
re
ce
iv
ed

w
ee
kl
y
by

th
e
co
m
pa

ny
yo

u
ar
e
em

pl
oy

ed
by

?
[L
es
st

ha
n
50

;5
0
to

20
0;

20
0
to

50
0;

50
0
to

2,
00

0;
2,
00

0
to

5,
00

0;
5,
00

0
to

10
,0
00

;N
/A

]
N
/A

4.
W

ha
ti
sy

ou
rr
ol
ew

ith
in

th
ec

om
pa

ny
yo

u
ar
ee

m
pl
oy

ed
by

?
[E
ng

in
ee
rin

g
(s
of
tw

ar
ed

ev
el
op

er
,s
of
tw

ar
ee

ng
in
ee
r,
so
ftw

ar
ea

rc
hi
te
ct
,e
tc
.);

M
an

ag
em

en
t(
D
ev
el
op

m
en

tm
an

ag
er
,

pr
od

uc
tm

an
ag

er
,e
tc
.);

Su
pp

or
t(
cu

st
om

er
su

pp
or
te
r,
he

lp
de

sk
em

pl
oy

ee
,e
tc
.)]

N
/A

5.
H
ow

m
an

y
ye

ar
so

fe
xp

er
ie
nc

e
do

yo
u
ha

ve
in

th
e
fie

ld
of

in
fo
rm

at
io
n
te
ch

no
lo
gy

?
[0
..7

5]
N
/A

C
ur

re
nt

si
tu
at
io
n

6.
H
ow

m
uc

h
tim

e
do

yo
u
an

d
yo

ur
co
lle

ag
ue

ss
pe

nd
w
ee
kl
y
on

pr
io
rit

iz
at
io
n
of

so
ftw

ar
e
m
ai
nt
en

an
ce

ta
sk
s?

[L
es
st

ha
n
1
ho

ur
;1

to
5
ho

ur
s;
5
to

10
ho

ur
s;
M
or
e
th
an

10
ho

ur
s]

P1
7.

H
ow

fr
eq

ue
nt

do
yo

u
ex
pe

rie
nc

e
a
la
ck

of
co
ns

en
su

s
on

pr
io
rit

iz
in
g
so
ftw

ar
e
m
ai
nt
en

an
ce

ta
sk
s
w
ith

ea
ch

of
th
e
fo
llo

w
in
g
co
lle

ag
ue

s?
[N

ev
er

(1
);
Ra

re
ly

(2
);
M
on

th
ly

(3
);

W
ee
kl
y
(4
);
D
ai
ly

(5
);
N
/A

]
•

En
gi
ne

er
in
g

•
M
an

ag
em

en
t

•
Su

pp
or
t

P1

8.
To

w
hi
ch

ex
te
nt

do
es

kn
ow

le
dg

e
of

yo
ur

so
ftw

ar
e
ar
ch

ite
ct
ur
e
pl
ay

a
ro
le

in
pr
io
rit

iz
in
g
so
ftw

ar
e
m
ai
nt
en

an
ce

ta
sk
sw

ith
in

yo
ur

or
ga

ni
za

tio
n?

[1
(V
er
y
m
in
or

ro
le
);
2;

3;
4;

5
(V
er
y
m
aj
or

ro
le
);
N
/A

]
P1

9.
To

w
hi
ch

ex
te
nt

do
es

kn
ow

le
dg

e
of

en
d-
us

er
sa
tis

fa
ct
io
n
pl
ay

a
ro
le

in
pr
io
rit

iz
in
g
so
ftw

ar
e
m
ai
nt
en

an
ce

ta
sk
sw

ith
in

yo
ur

or
ga

ni
za

tio
n?

[1
(V
er
y
m
in
or

ro
le
);
2;

3;
4;

5
(V
er
y
m
aj
or

ro
le
);
N
/A

]
P1

10
.
To

w
hi
ch

ex
te
nt

do
es

kn
ow

le
dg

e
of

th
e
effi

ci
en

cy
of

th
e
m
ai
nt
en

an
ce

pr
oc
es
s
w
ith

in
yo

ur
or
ga

ni
za

tio
n
pl
ay

a
ro
le

in
pr
io
rit

iz
in
g
so
ftw

ar
e
m
ai
nt
en

an
ce

ta
sk
s
w
ith

in
yo

ur
or
ga

ni
za

tio
n?

[1
(V
er
y
m
in
or

ro
le
);
2;

3;
4;

5
(V
er
y
m
aj
or

ro
le
);
N
/A

]
P1

Ex
pe

ct
at
io
ns

11
.H

ow
of
te
n
co
ul
d
yo

u,
in

yo
ur

cu
rr
en

tr
ol
e,
w
el
lu

se
a
so
ftw

ar
e
op

er
at
io
n
su

m
m
ar
y?

[N
ev
er

(1
);
Ra

re
ly

(2
);
M
on

th
ly

(3
);
W
ee
kl
y
(4
);
D
ai
ly

(5
);
N
/A

]
P1

12
.W

ith
w
hi
ch

of
yo

ur
ac
tiv

iti
es

is
a
so
ftw

ar
e
op

er
at
io
n
su

m
m
ar
y
of

m
os
tu

se
to

yo
u?

[..
.]

P1
13

.T
o
w
hi
ch

ex
te
nt

do
yo

u
ex
pe

ct
th
at

a
so
ftw

ar
e
op

er
at
io
n
su

m
m
ar
y
in
cr
ea
se
sy

ou
rk

no
w
le
dg

e
of

ea
ch

of
th
e
fo
llo

w
in
g:

[C
er
ta
in
ly

no
t(
1)
;p

ro
ba

bl
y
no

t(
2)
;P

os
si
bl
y
(3
);

Pr
ob

ab
ly

(4
);
C
er
ta
in
ly

(5
);
N
/A

]
•

So
ftw

ar
e
ar
ch

ite
ct
ur
e
qu

al
ity

•
En

d-
us

er
sa
tis

fa
ct
io
n

•
M
ai
nt
en

an
ce

pr
oc
es
se

ffi
ci
en

cy

P2 P3 P4

14
.
To

w
hi
ch

ex
te
nt

do
yo

u
ex
pe

ct
to

sa
ve

tim
e
on

pr
io
rit

iz
at
io
n
of

so
ftw

ar
e
m
ai
nt
en

an
ce

ta
sk
s
w
ith

a
so
ftw

ar
e
m
ai
nt
en

an
ce

su
m
m
ar
y?

[C
er
ta
in
ly

no
t(
1)
;p

ro
ba

bl
y
no

t(
2)
;

Po
ss
ib
ly

(3
);
Pr
ob

ab
ly

(4
);
C
er
ta
in
ly

(5
);
N
/A

]
P6

15
.T

o
w
hi
ch

ex
te
nt

do
yo

u
ex
pe

ct
in
fo
rm

at
io
n
co
nt
ai
ne

d
in

a
so
ftw

ar
e
op

er
at
io
n
su

m
m
ar
y
to

fo
st
er

th
e
re
ac
h
of

co
ns

en
su

so
n
pr
io
rit

iz
at
io
n
of

so
ftw

ar
e
m
ai
nt
en

an
ce

ta
sk
s,
w
ith

ea
ch

of
th
e
fo
llo

w
in
g
co
lle

ag
ue

s?
[C

er
ta
in
ly

no
t(
1)
;p

ro
ba

bl
y
no

t(
2)
;P

os
si
bl
y
(3
);
Pr
ob

ab
ly

(4
);
C
er
ta
in
ly

(5
);
N
/A

]
•

En
gi
ne

er
in
g

•
M
an

ag
em

en
t

•
Su

pp
or
t

P5

C
ra
sh

re
po

rt
da

ta

16
.I
nd

ic
at
e
w
hi
ch

da
ta

ty
pe

si
n
yo

ur
op

in
io
n
co
nt
rib

ut
e
m
os
tt
o
su

cc
es
sf
ul

ex
ec
ut
io
n
of

th
e
fo
llo

w
in
g
ac
tiv

iti
es
:[
Li
st
of

da
ta

ty
pe

sl
is
te
d
in

ta
bl
e
6.
4]

•
D
et
er
m
in
in
g
w
hi
ch

bu
g
w
ill

re
su

lt
in

th
e
la
rg
es
ti
nc

re
as
e
of

so
ftw

ar
e
ar
ch

ite
ct
ur
e
qu

al
ity

,o
nc

e
fix

ed
•

D
et
er
m
in
in
g
w
hi
ch

bu
g
w
ill

re
su

lt
in

th
e
la
rg
es
ti
nc

re
as
e
of

en
d-
us

er
sa
tis

fa
ct
io
n,

on
ce

fix
ed

•
D
et
er
m
in
in
g
w
hi
ch

bu
g
w
ill

re
su

lt
in

th
e
la
rg
es
tp

ro
gr
es
si
n
th
e
so
ftw

ar
e
m
ai
nt
en

an
ce

pr
oc
es
s,
on

ce
fix

ed

P2 P3 P4

Ta
bl
e
6.
3

Su
rv
ey

qu
es
tio

ns
an

d
pr
op

os
iti
on

s

125

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

V
endornam

e

M
icrosoft[M

i-
crosoftO

nline
C
rash

A
nalysis

2005,M
icrosoft

ErrorR
eporting

2006]

A
pple

[M
ac

O
S
X

R
eference

Library
2010]

C
anonical[U

buntu
W

iki2010]
G
oogle

[G
oogle

Breakpad
2010]

ER
PC

om
p

C
A
D
C
om

p

C
rash

reporterform
O
perating

system
service

Externallibrary
Productsoftw

are
feature

C
ategory

U
nified

data
type

D
ata

type
instance

Softw
are

A
pplication

nam
e

Identifier
G
eneralA

ppN
am

e
Package

–
–

C
ause

Build
version

Build
Info

Version
Inform

ation
StackTrace,Package

M
O
D
U
LE

nam
e

–
BuildVersion

C
ode

file
and

line
num

bercausing
the

crash
Backtrace

–
StackTrace

FILE
nam

e
–

C
auseLocation

C
ode

file
and

line
num

berpresenting
the

crash
(to

end-
user)

Backtrace
–

–
FILE

nam
e

–
–

D
atabase

–
–

–
–

D
atabase

–
Edition

–
–

–
–

–
Edition

Errorcode
Exception

C
odes

Exception
C
ode

–
–

–
–

Errorm
essage

–
–

–
–

Exception
details

–
Errortype

Exception
Type

–
–

–
Exception

Type
ExceptionType

Lastuseraction
(click,com

m
and,etc.)

Backtrace
–

StackTrace
FU

N
C
nam

e
A
ction

nam
e

–
Lastoperation

context(page,screen,etc.)
–

–
–

–
Page

nam
e

–
Localization

–
–

–
–

–
Localization

M
em

ory
address

Exception
C
odes

Exception
A
ddress

–
FU

N
C
address

–
M
em

oryLocation
M
odule

causing
the

crash
Backtrace

–
StackTrace

–
C
auseM

odule
M
odule

presenting
the

crash
(to

end-user)
Backtrace

–
–

–
Page

nam
e

–

O
peration

environm
ent(operating

system
,brow

ser)
O
S
Version

System
Inform

ation
D
istroRelease,

ProcEnviron
M
O
D
U
LE

operatingsystem
O
S,

Brow
ser,

page
data

–

Processnam
e

ProcessIdentifier
–

–
–

–
–

Processorarchitecture
C
ode

Type
System

Inform
ation

–
M
O
D
U
LE

architecture
–

ProcessorType
Session

type
–

–
–

–
Session

data
–

Thread
nam

e
C
rashed

Thread
–

–
–

–
–

Version
Version

Version
Inform

ation
Package

–
–

–

End-user

C
om

m
entsaccom

panying
report

–
–

–
–

–
EnduserC

om
m
ents

C
om

pany
nam

e
–

–
–

–
C
ustom

er
C
om

panyN
am

e
C
ountry

–
–

–
–

–
SourceC

ountry
IP

address
IP

address
–

–
–

IP
address

IPA
ddress

Language
–

–
–

–
–

Language
License

num
ber

–
–

–
–

–
LicenseN

um
ber

U
sernam

e
–

–
–

–
U
ser

U
serN

am
e

Table
6.4

C
ategorization

ofcrash
reportdata

types

126

Maintenance Task Prioritization Survey

6.4 MAINTENANCE TASK PRIORIT IZATION SURVEY

As part of the Operation information selection activity described in section 6.3, a
software maintenance task prioritization survey was designed and conducted
to evaluate the six propositions and to establish which operation information
from crash reports is considered relevant by the three employee roles. The sur-
vey was reviewed and tested by peer researchers and target respondents before
publication. To acquire survey respondents, the survey was announced to our
educational and professional networks, for example via an expert focus group
consisting of chief technology officers, product managers and senior team lead-
ers from industry. Also, the survey was noticed and advertised by press in the
Netherlands [Nap 2011]. The survey was composed of 16 questions divided
over four sections (see table 6.3):

General
The survey started with five questions to identify the respondent, as well
as the software vendor the respondent is employed by. The first three
questions were asked to get insight in the size of the company the re-
spondent is employed at, in terms of number of employees, end-users and
received crash reports. The answer sets of these questions (as denoted be-
tween square brackets in table 6.3) were deducted from the definition for
small and medium-sized enterprises (SMEs) of the European Commis-
sion [OOPEC 2005]. The answer options of question 3 contained a ‘Not
Applicable’ option for vendors not receiving any crash reports. Question
4 was asked to identify the role of the respondent within its employing
company and could be answered with three options that correspond to
the roles in table 6.1. Finally, question 5 was an open question query-
ing the respondent’s experience in information technology. This section’s
questions correspond to none of the propositions.

Current situation
This section is composed of five questions that were asked to establish the
situation at the respondent’s organization regarding prioritization of soft-
ware maintenance tasks, and identify potential improvement areas. The
first two questions respectively queried the amount of time that is spent
on softwaremaintenance prioritization tasks by the respondent, aswell as
the frequencywith which the respondent experiences a lack of consensus
with colleagues on prioritizing software maintenance tasks. Questions 8,
9 and 10 each refer to a particular prioritization focus and improvement
aspect in table 6.1 and were asked to confirm the importance of the main-

127

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

tenance foci within the respondent’s company. Each of these questions
correspond to an identical set of answer options that is equivalent to a
five-point Likert item (see table 6.3). All questions in the Current situation
section were asked to evaluate proposition P1.

Expectations
As an introduction to the questions in this section, the software opera-
tion summary concept was introduced to respondents before asking the
questions by providing a basic definition of the concept, as well as a de-
scription of three of its goals (providing knowledge of (1) software ar-
chitecture quality, (2) end-user satisfaction, (3) maintenance process effi-
ciency). Five questions related to expected or potential use of a software
operation summary were asked in this section to establish the need for,
and potential of such a summary based on crash report data. Particularly,
questions 11 and 12were asked to establish expected integration of a soft-
ware operation summary with the respondent’s current activities and re-
quirements. We chose to let question 12 be an open question to prevent
bias of respondents, which, for example, could be induced by providing
a predefined set of activities. Questions 13, 14 and 15 query the respon-
dent’s expectations concerning the effects of using a software operation
summary, respectively in terms of knowledge increase, time saving and
consensus reach. The answer options of these three questions represent
a five-point Likert item (see table 6.3). Questions 11 and 12 were asked to
evaluate proposition P1, question 13 to evaluate propositions P2, P3 and
P4 and questions 14 and 15 were asked to evaluate propositions P5 and
P6, respectively.

Crash report data
The last section of the survey is concerned with what crash report data
are considered relevant input for prioritization of corrective and adaptive
software maintenance tasks. A list of answer options in the form of uni-
fied crash report data types was assembled based on crash report data
types of existing, widely-used and widely-known crash reporting tech-
niques. See table 6.4.

Crash reporting techniques from Microsoft [Microsoft Online Crash
Analysis 2005, Microsoft Error Reporting 2006], Apple [Mac OS X Ref-
erence Library 2010], Canonical [Ubuntu Wiki 2010] and Google [Google
Breakpad 2010], as well as those of two European software vendors called
ERPComp and CADComp (actual vendor names have been anonymized

128

Analysis of Survey Results

for confidentiality reasons), were analyzed and compared to assemble the
answer list with data types that was presented to respondents as an in-
troduction to this section. ERPComp produces an online ERP solution
that is used by about 17,000 customers; CADComp produces an indus-
trial drawing application targeted on the Microsoft Windows platform
and is used by more than 4,000 customers in five countries. Both vendors
are headquartered in the Netherlands and were visited on-site.

To ease understanding and answering of this question for respondents,
data types were categorized into two categories: software and end-user.
One additional answer option ‘Other’ was added to the list of 28 crash
report data type answer options, to allow respondents to add additional
data types matching their crash report data structure. Question 16 was
asked to evaluate propositions P2, P3 and P4.

As listed in table 6.3, questions 7, 13, 15 and 16 had to be answered for three
question components: questions 7 and 15 had to be answered for each of the
software maintenance task prioritization perspectives (Engineering, Manage-
ment and Support; see table 6.1) and question 13 and 16 had to be answered for
each of the prioritization foci and improvement aspects of these perspectives.
These questions were designed as such to expose relations between employee
roles, maintenance foci and improvement aspects in reaching consensus on pri-
oritization of software maintenance tasks.

6.5 ANALYSIS OF SURVEY RESULTS

In total, 136 respondents from about 72 different software-producing compa-
nies1 participated in our survey (n = 136). All of the respondents completed
section General, 111 (81.6%) completed Current situation, 97 (71.3%) completed
Expectations and 79 (58.1%) completed the final section of the survey, Crash re-
port data. Those percentages should be taken into account in further analysis of
survey results, which is provided in the following sections.

6.5.1 General

Most respondents are employed by a vendor that employs more than 200 peo-
ple (49.3%) or 20 to 50 people (15.4%). Almost three-quarter of the respon-
dents (72.1%) is employed by a vendor that serves more than 100,000 end-
users (35.3%), 10,000 to 100,000 end-users (18.4%) or 2,000 to 10,000 end-users

1Survey respondents participated with 72 unique IP addresses (addresses that only differed on
third or fourth octet were considered identical).

129

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

Engineering Support

Management

2.93
(σ = 1.10)

2.83
(σ = 1.08)

2.67
(σ = 0.94)

2.52
(σ = 0.91)

2.85
(σ = 1.21)

2.72
(σ = 1.26)

3.00
(σ = 1.02)

3.17
(σ = 1.23)

2.81
(σ = 0.98)

Engineering Support

Management

3.74
(σ = 0.93)

3.77
(σ = 1.05)

3.84
(σ = 0.90)

3.96
(σ = 0.98)

3.48
(σ = 1.00)

3.38
(σ = 1.15)

3.57
(σ = 0.92)

3.73
(σ = 1.06)

3.48
(σ = 0.71)

(a) (b)

(max(value) - 0.25) < value < max(value)
(max(value) - 0.50) < value < (max(value) - 0.25)

0 < value < (max(value) - 0.50)

Figure 6.3 (a): average frequency with which lack of consensus is experienced between
the different employee roles (question 7); (b): average extent towhich the employee roles
expect SOS information to foster the reach of consensus (question 15). Thicker arrows
indicate higher frequencies and expectations

(18.4%). Most vendors (66.9%) receive less than 50 crash reports (52.9%) or be-
tween 50 and 200 (14.0%) crash reports per week (19.1% of the respondents
answered ‘N/A’ to question 3). Respondents were evenly distributed over em-
ployee roles: 28.7% identified its role as part of Engineering (12.4 years of expe-
rience on average,σ = 7.6), 36.0% as part ofManagement (15 years of experience
on average, σ = 7.2 years), and 35.3% as part of Support (9.6 years of experience
on average, σ = 8.9 years). In total, respondents have 1676 years of experience
(12.3 years on average, σ = 8.3 years).

6.5.2 Current Situation

Of the 111 respondents that have answered the first question of this section,
most (55.9%) spend 1 to 5 hours weekly on prioritization of software mainte-
nance tasks. 24.3% indicated to spend less than 1 hour on these tasks weekly,
while 10.8% indicated to spend more than 10 hours weekly on prioritization of
software maintenance tasks.

Figure 6.3a visualizes the lack of consensus experienced by the responding
software engineers, customer supporters and managers, as inquired through
question 7. Lack of consensus is most frequently experienced by (1) support

130

Analysis of Survey Results

Figure 6.4 Importance of the maintenance foci for the different employee roles
(questions 8–10)

with engineering (3.17 on average: more often than monthly), (2) engineering
with management (3.00 on average: monthly) and (3) management with en-
gineering (2.93 on average: less often than monthly). Also, engineering and
management experience lack of consensus with respectively management and
engineering most frequently, compared to other roles. We believe the cause of
this outcome is related to the nature of the challenges that are faced by the two
roles (i.e., technical versus managerial). Except for support, employees least
frequently experience lack of consensus with employees having the same role.

Results of questions 8 to 10 (role of maintenance foci and corresponding im-
provement aspects) are displayed in figure 6.4. It is remarkable that for all em-
ployee roles, end-user satisfaction plays the largest role in prioritizing software
maintenance tasks, software architecture quality the second-largest, and main-
tenance process efficiency relatively the smallest role. Comparing employee
roles per maintenance focus, it should be noted that software architecture qual-
ity plays the lowest role for engineering. This may be caused by the confidence
software engineers have in their work: of the three employee roles, engineers
have the most knowledge of, and may be the most confident about the quality
of their software architecture. Maintenance process efficiency plays the high-
est role for support (possibly because they wish as much in-the-field software
failures reported by customers as possible to be fixed as soon as possible), and
end-user satisfaction is approximately equally important for all employee roles.

Although the lack of consensus between the three employee roles can there-
fore not be justified by absolute differences in maintenance foci, it could be jus-
tified by relative differences. For example, the role software architecture qual-

131

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

Engineering
Support

0

3

4

1
1

6

0

4

7

6

8

1

4

7

1
0

3

0
 5

1
0

1
5

2
0

2
5

3
0

C
e
rta

in
ly n

o
t

P
ro

b
a
b

ly n
o

t

P

o
ssib

ly

P

ro
b

a
b

ly

C

e
rta

in
ly

1

4

5

1
3

1
6

0

5

1
4

1
6

4

2

1

9

1
6

1
0

0
 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

C
e
rta

in
ly n

o
t

P
ro

b
a
b

ly n
o

t

P

o
ssib

ly

P

ro
b

a
b

ly

C

e
rta

in
ly

E
n

d
-u

se
r sa

tisfa
c
tio

n

S

o
ftw

a
re

 a
rc

h
ite

c
tu

re
 q

u
a
lity

M
a
in

te
n

a
n

c
e
 p

ro
c
e
ss e

ffic
ie

n
c
y

0

2

6

1

0

1

2

0

2

6

9

1
2

2

2

7

1
0

9

0
 5

1
0

1
5

2
0

2
5

3
0

3
5

C
e
rta

in
ly n

o
t

P
ro

b
a
b

ly n
o

t

P

o
ssib

ly

P

ro
b

a
b

ly

C

e
rta

in
ly

M
anagem

ent

Figure
6.5

Expectations
per

em
ployee

role
regarding

the
extentto

w
hich

a
softw

are
operation

sum
m
ary

w
ould

increase
their

know
ledge

(question
13)

132

Analysis of Survey Results

ity plays in prioritization of software maintenance tasks increases as employee
roles have more direct communication with customer’s end-users. In software-
producing organizations, customer supporters are typically directly confronted
with bugs and crashes experienced by end-users than management. Although
engineering departments typically provide third line support, communication
with end-users is less direct and frequent than between management and end-
users.

6.5.3 Expectations

All employee roles would like to use a software operation summary about ev-
ery three weeks (average usage frequencies are all more often than monthly:
engineering 3.46 (σ = 0.76), management 3.59 (σ = 0.78), support 3.39 (σ =

0.90)). To illustrate the potential applications of such a summary, we created
a frequency list of all responses to question 12. Based on analysis of this list,
a software operation summary is expected to be most of use during activities
related to sprint and release planning, bug fixing and software development, as
well as during evaluations (of, for example, software operation at a particular
customer, or the most recent sprint).

Expectations of engineering, management and support employees regarding
the extent to which a software operation summary could increase their knowl-
edge of software architecture quality, end-user satisfaction and maintenance
process efficiency (question 13) is visualized by figure 6.5. With an SOS, all em-
ployee roles expect to save time on software maintenance task prioritization to
reasonable extent: the modus of the answers to question 14 was ‘Possibly’ for
engineering (average: 3.5, σ = 1.00), and ‘Probably’ for management (average:
3.38, σ = 0.92) and support (average: 3.24, σ = 0.97). Figure 6.3b visualizes
the extent to which the different employee roles expect information in a soft-
ware operation summary to foster the reach of consensus (question 15). First
of all, the parties that experience a lack of consensus the most (support with
engineering, engineering with management, management with engineering),
expect an SOS to foster reach of consensus with the colleagues with which they
experience this lack of consensus. As opposed to support, engineering and
management both expect an SOS to foster reach of consensus the most with
colleagues that have the same role. Of all employee roles, management has the
highest expectations in reaching consensus with other employee roles. In abso-
lute terms, highest expectations are expressed by engineers, expecting an SOS
to foster reach of consensus with other engineers with an average of 3.96 (σ =

0.98, modus = ‘Certainly’). Finally, most employees consider an SOS fostering

133

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

the reach consensus with colleagues on software maintenance task prioritiza-
tion as probable (modus = ‘Probably’).

6.5.4 Crash Report Data

As stated in section 6.4, the last survey section of the survey is concerned with
identification of which crash report data are considered relevant as a basis for
an SOS that fosters reaching consensus on prioritization of software mainte-
nance tasks. In view of this fact, we focus on the most-selected data types per
maintenance focus per employee role. The more employees differ in data type se-
lection, the more data types are involved in determining which bugs should be
fixed to reach the largest increase of the three maintenance foci. See figure 6.6.

Regarding the software architecture quality focus, the most-selected data
types are all related to software failure cause identification: data types ‘Code
file and line number causing the crash’ and ‘Module causing the crash’ were
most selected by engineering and management, while support selected data
types ‘Application name’ and ‘Thread name’ the most. End-user satisfaction
data types are more related to identification of the customer: ‘Company name’
and ‘Application name’ were data types most selected by engineering and
management, while support selected data types ‘Company name’ and ‘Com-
ments accompanying report’ the most. Finally, concerning maintenance pro-
cess progress, some most-selected data types are related to software releases
over time (i.e., ‘Build version’ and ‘Version’). ‘Build version’ and ‘Code file and
line number presenting the crash’ were data types most selected by manage-
ment, ‘Build version’, ‘Database’ and ‘Module cause crash’ were most selected
by engineering, and support selected ‘Code file and line number presenting the
crash’, ‘Code file and line number causing the crash’ and ‘Version’ the most.

In total, four additional data types were suggested by respondents using the
‘Other’ field: (number of crash reports per) ‘Performance peak, Slow request’,
‘Code file / class’, ‘GUI element’ and ‘Software configuration’. While the first
suggestion is out of the scope of this paper (not being part of typical crash report
data) and the secondwas already part of the presented data types (code file and
line number, module), the latter two are taken into account for future research.

Focussing on the expectations for a software operation summary that is de-
signed for fostering consensus on prioritization of software maintenance tasks,
survey results can be summarized as follows:

• All employee roleswould like to use such an SOS about every threeweeks,
particularly in preparation of (sprint) planning, (software) development
and bug fixing

134

Analysis of Survey Results

So
ftw

ar
e

ar
ch

ite
ct

ur
e

qu
al

ity
En

d-
us

er
 s

at
is

fa
ct

io
n

M
ai

nt
en

an
ce

 p
ro

ce
ss

 p
ro

gr
es

s

7
!

1
2
!

1
5
!

1
2
!

1
6
!

1
1
!

1
1
!

1
4
!

1
3
!

1
!

7
!

1
5
!

0
%
!

1
0
%
!

2
0
%
!

3
0
%
!

4
0
%
!

5
0
%
!

6
0
%
!

7
0
%
!

8
0
%
!

9
0
%
!

1
0
0
%
!

E
n
g

in
e
e
ri
n
g
!

M
a
n
a
g

e
m

e
n
t!

S
u
p

p
o

rt
!

T
h
re

a
d

 n
a
m

e
!

M
o

d
u
le

 c
a
u
si

n
g

 t
h
e
 c

ra
sh

!

C
o

d
e
 fi

le
 a

n
d

 li
n
e
 n

u
m

b
e
r

c
a
u
si

n
g

 t
h
e
 c

ra
sh

!

A
p

p
lic

a
ti
o

n
 n

a
m

e
!

1
1
!

1
7
!

1
2
!

8
!

1
4
!

1
6
!

1
3
!

2
0
!

1
6
!

0
%
!

1
0
%
!

2
0
%
!

3
0
%
!

4
0
%
!

5
0
%
!

6
0
%
!

7
0
%
!

8
0
%
!

9
0
%
!

1
0
0
%
!

E
n
g

in
e
e
ri
n
g
!

M
a
n
a
g

e
m

e
n
t!

S
u
p

p
o

rt
!

C
o

m
p

a
n
y

n
a
m

e
!

C
o

m
m

e
n
ts

a
c
c
o

m
p

a
n
yi

n
g

 r
e
p

o
rt
!

A
p

p
lic

a
ti
o

n
 n

a
m

e
!

8
!

9
!

5
!

3
!

1
0
!

8
!

4
!

8
!

1
0
!

5
!

8
!

4
!

5
!

6
!

3
!

4
!

6
!

8
!

0
%
!

1
0
%
!

2
0
%
!

3
0
%
!

4
0
%
!

5
0
%
!

6
0
%
!

7
0
%
!

8
0
%
!

9
0
%
!

1
0
0
%
!

E
n
g

in
e
e
ri
n
g
!

M
a
n
a
g

e
m

e
n
t!

S
u
p

p
o

rt
!

V
e
rs

io
n
!

M
o

d
u
le

 c
a
u
si

n
g

 t
h
e
 c

ra
sh

!

D
a
ta

b
a
se

!

C
o

d
e
 fi

le
 a

n
d

 li
n
e
 n

u
m

b
e
r

p
re

se
n
ti
n
g

 t
h
e
 c

ra
sh

!

C
o

d
e
 fi

le
 a

n
d

 li
n
e
 n

u
m

b
e
r

c
a
u
si

n
g

 t
h
e
 c

ra
sh

!

B
u
ild

 v
e
rs

io
n
!

Fi
gu

re
6.
6

M
os
t-s

el
ec
te
d
cr
as
h
re
po

rt
da

ta
ty
pe

s
pe

r
m
ai
nt
en

an
ce

fo
cu

s
pe

r
em

pl
oy

ee
ro
le
.
Th

e
da

ta
ty
pe

s
ar
e
ex
pe

ct
ed

to
co
nt
rib

ut
e
th
e

m
os
tt
o
su

cc
es
sf
ul

de
te
rm

in
at
io
n
of

w
hi
ch

bu
gs

w
ill

re
su

lt
in

th
e
la
rg
es
ti
nc

re
as
e
of

so
ftw

ar
e
ar
ch

ite
ct
ur
e
qu

al
ity

,e
nd

-u
se
rs

at
is
fa
ct
io
n
an

d
m
ai
nt
en

an
ce

pr
oc
es
s
pr
og

re
ss
,o

nc
e
fix

ed
(q
ue

st
io
n
16

).
Th

e
da

ta
ty
pe

s
fo
rm

th
e
ba

si
s
of

an
SO

S
th
at

fo
st
er
s
co
ns

en
su

s
on

pr
io
rit

iz
at
io
n
of

so
ftw

ar
e
m
ai
nt
en

an
ce

ta
sk
s

135

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

• Such an SOS is expected to particularly foster reach of consensus between
managers and other employees, engineers themselves and between sup-
porters and engineers

• Crash report data supporting identification of software failure causes,
customers experiencing the failures, and software releases used by cus-
tomers over time, form the basis of such an SOS.

6.6 SENDING OUT AN SOS : CASE STUDY RESULTS

To further establish the soundness and validity of the SOS concept, in addi-
tion to survey results we conducted a case study [Yin 2009] of one month at
CADComp, during which we composed an SOS based on crash report data.
Having attended development meetings and plenary company meetings, we
observed lack of consensus between (product) management, and both devel-
opment and support employees on prioritization of software engineering work
items: based on received crash reports, the former employees believed that in-
the-field product quality was increasing and implementation of new features
should have first priority, while both latter employee groups contrarily believed
that product quality was decreasing and bug fixing should have first priority.

Based on our observations at CADComp,we created an SOS in the formof an
ASP.NETMVCweb application that was deployed at the vendor’s intranet. De-
rived from CADComp crash report data, the SOS presents software operation
information in the form of graphs that visualize recent software operation his-
tory. Figure 6.7 shows one of the graphs that visualizes recent software quality:
crash reports sent by various in-the-field releases of theCADComp software are
distributed over the code file names (partly hidden for confidentiality reasons)
and line numbers that caused the particular crash.

Apart fromwhich code is causing in-the-field software failures in which ver-
sion of the software, this SOS graph provides knowledge about crash report ac-
quisition service outages (a), how in-the-field software quality improves over
time (b), which code forms structural weaknesses in the software (c), when the
software is barely used by end-users (d) and when new major bugs are intro-
duced (e). Furthermore, the SOS provides operation meta data such as opera-
tion environment statistics and customer names corresponding to the crash.

The soundness and validity of the SOS in the context of CADComp’s work
item prioritization were evaluated through seven unstructured interview ses-
sions [Yin 2009] with three product managers, two senior software engineers
and two customer supporters. Although the product managers initially asked

136

Sending Out an SOS: Case Study Results

Crash report
acquisition service outage

Low level of
software usageCode files

structurally causing failures

Failures caused
by new code

Software quality
improvement

C
od

e
fil

e
an

d
lin

e
nu

m
be

r c
au

si
ng

 th
e

cr
as

h

A

B

C
D

E

Version

Submission date

Figure 6.7 A software quality graph of the SOS implemented at CADComp, showing
crashes per ‘code file and line number causing the crash’ over time

for help with interpreting the SOS graph depicted in figure 6.7 (they assumed
the graph illustrated a linear increase of crash report submissions), all seven
interviewees indicated that the graph increased awareness of in-the-field soft-
ware operation throughout the organization, and expected the SOS application
to contribute to the reach of consensus on work item prioritization (new fea-
tures versusmaintenance tasks). Also, software engineers suggested to only in-
clude crash reports in the SOS graph that form structural problems (since those
problems cause the most crashes, and result in the highest increase in software
architecture quality, once solved). Finally, customer supporters expected that
on the long term, frequent usage of the software operation summary would
result in an increase of customer satisfaction.

Based on results of both theCADCompcase study aswell as themaintenance
task prioritization survey, the six propositions defined in section 6.3 are evalu-
ated. Survey results show that most employees spend 1 to 5 hours weekly on
softwaremaintenance task prioritization, duringwhich lack of consensus is fre-
quently experienced, particularly with employees from engineering (monthly
on average). All employee roles could well use a software operation summary

137

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

about every three weeks, particularly during in preparation of (sprint) plan-
ning, (software) development, and bug fixing activities. Therefore, we con-
sider proposition P1 (A software operation summary is expected to integrate with cur-
rent software maintenance practices) to be correct. The next three propositions (A
software operation summary is expected to increase knowledge of software architecture
quality (P2), end-user satisfaction (P3), maintenance process efficiency (P4)) are also
confirmed by survey results: employees from engineering, management and
support mostly consider a software operation summary to increase knowledge
of software architecture quality, end-user satisfaction andmaintenance process
efficiency as probable. Also, most respondents (28%) consider an SOS fostering
the reach consensus with colleagues in terms of software maintenance task pri-
oritization as probable. Proposition P5 (A software operation summary is expected
to foster achieving consensus on software maintenance task prioritization) is therefore
considered to be correct. Proposition P6 (A software operation summary is ex-
pected to reduce the time needed for software maintenance task prioritization) appears
to be relatively difficult to evaluate: while on average, saving time on prioritiza-
tion of software maintenance tasks through SOS usage is considered ‘possible’
by nearly all respondents, further research is needed to demonstrate reduction
of the time needed for software maintenance task prioritization through SOS
usage. We therefore consider the correctness of this proposition to be undeter-
mined until further research on this subject has been performed. Finally, case
study results support propositions P1, P2, P3 and P5.

6.7 THREATS TO VALIDITY

The validity of the study results is threatened by several factors. First, survey-
related aspects (as described by Kitchenham and Pfleeger [Kitchenham and
Pfleeger 2002]) threaten construct validity of the research. For example, al-
though 136 respondents initiated the survey, 79 (58.1%) completed it. This may
be grounded in the type, order and number of survey questions. Also, as a
consequence of the fact that the survey was anonymous, we can not exactly
determine the number of distinct software-producing organizations that have
responded to the survey, as well as the distribution of employee roles per or-
ganization. Furthermore, while concepts (such as the SOS) were introduced
to respondents before questions related to these concepts were asked, it might
be that common understanding among respondents was not fully reached. Al-
though statistical relevance of (differences in) survey results may be limited by
these factors, we believe the results are indicative and representative for the
product software industry in the Netherlands.

138

Related Work

Second, internal validity of the study may be threatened by the fact that in
this study, we focus on corrective and adaptive software maintenance tasks,
while preventive and perfective tasks are considered outside the scope of the
study considering the types of data generally provided by crash reports. Con-
clusions based on the survey results might appear to be biased to certain extent.
We acknowledge, however, that different types of operation information can be
used to meet different requirements in optimizing maintenance activities and
processes (as expressed in section 6.6).

Third, external validity of our research may be threatened by two factors.
First, survey results could be dominated by respondents of a small number of
software vendors. Second, in this study we focus on corrective and adaptive
maintenance tasks. Both factors may influence the extent to which the results
are applicable to other (types of) vendors: survey results might to certain extent
be typical for software vendors in the Netherlands, and therefore are limitedly
generalizable to vendors outside these categories. Although we believe that
the results of this study are representative for many vendors, further research
is needed to mitigate these threats.

6.8 RELATED WORK

Many research efforts cover the use of information fragments to improve peo-
ple’s practices, processes and workflows. However, to improve those through
software operation knowledge is only considered by few. Kim et al. [Kim et al.
2011] propose a machine learning approach for predicting top software fail-
ures to prioritize maintenance efforts. Although their approach appears to be
promising (75%–90% accuracy), it only considers the frequency of a crash as a
prioritization factor: it does not consider software operation at particular cus-
tomers, or involve the efficiency of the maintenance process, for example.

To determine the contents and investigate the quality of bug reports (as op-
posed to crash reports, which are researched in this paper), Zimmerman et al.
conducted a survey among developers of Apache, Eclipse and Mozilla [Zim-
mermann et al. 2010]. Their conclusions (e.g. well-written, complete reports
are likely to get more attention than poorly written or incomplete ones) may
also apply to the SOS concept. However, their study only involves software
engineers and does not consider management or customer support employees.

As an attempt to answer questions asked by software developers during their
daily work, Fritz and Murphy [Fritz and Murphy 2010] have introduced an
information fragment model that supports composition of information from
multiple sources (among others, bug reports) and supports the presentation

139

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

of composed information in various ways. The authors show that the model
can support 78 questions developers want to ask about a development project.
While we recognize the value of combining information frommultiple sources
for answering diverse questions asked by one type of people, in our study we
use one source of information (crash reports) to answer one question (how should
software maintenance tasks be prioritized?) asked by multiple types of employees
(engineering, management and customer support). Involving and combining mul-
tiple sources of information could lead to lengthy discussions regarding reason
of information involvement as well as weight of the information in the result-
ing combination, which could delay the reach of consensus between different
employee roles.

6.9 CONCLUSIONS AND FUTURE WORK

Software-producing organizations increasingly recognize the relevance and
potential of software operation information visualizations on operation dash-
boards, reports and othermedia. However, all too often in industry, vendors ex-
perience difficulties in selecting and presenting operation information in such
a way that besides providing software operation knowledge, visualized soft-
ware operation information actually contributes to improvement of software
process execution. Software maintenance task prioritization, for instance, is
often time-consuming because reaching consensus between involved employ-
ees regarding this prioritization is tedious: involved employees have different
roles, each with corresponding concerns, maintenance foci and improvement
aspects.

In this paper, we propose the concept of software operation summary (SOS):
an overview of recent in-the-field software operation based on acquired soft-
ware operation information, which can be used to improve execution of soft-
ware processes. For example, improving the process of software maintenance
task prioritization by fostering the reach of consensus between employees on
such prioritization.

We report on an extensive software maintenance task prioritization survey,
held among 136 product / development managers, software developers and
customer supporters. Survey results confirm the demand for an SOS that con-
tributes to reach of consensus on software maintenance task prioritization, par-
ticularly in preparation of (sprint) planning, (software) development and bug
fixing activities. As a basis for such an SOS, particularly crash report data sup-
porting identification of (1) software failure causes, (2) customers experiencing
the failures, and (3) software releases used by customers over time, are con-

140

Conclusions and Future Work

sidered relevant. Furthermore, we report on a case study during which we
compose an SOS based on crash report data, and empirically evaluate it at a Eu-
ropean software vendor. Case study results show that an SOS increases aware-
ness of in-the-field software operation throughout software-producing organi-
zations, and indicate that it contributes to the reach of consensus on work item
prioritization (e.g., new features versus maintenance tasks). Based on survey
and case study results (through which the six propositions, defined to estab-
lish the soundness and validity of the SOS concept, are evaluated), we consider
the main research question of this paper (Can prioritization of software mainte-
nance tasks be improved through the concept of a software operation summary?) to be
answered positively.

While this paper focuses on the use of a software operation summary in the
context of software maintenance task prioritization, an SOS can be used to sup-
port numerous practices and processes. Using the SOK integration template
method [Van der Schuur et al. 2011a], software vendors can tailor the form and
contents of a software operation summary to their needs and requirements,
and therewith optimize integration and presentation of software operation in-
formation. Vendors should ensure that recent operation information is actually
available at the time and with the frequency an SOS is used. Also, selected un-
derlying data types should correspond with the needs of the involved employ-
ees. Vendors should be aware, however, that too many data types underlying
their SOS may limit the extent to which reach of consensus between their em-
ployees is fostered.

Future research activities include extension and concretization of the soft-
ware operation summary concept: concrete SOSes that are tailored to processes
other than software maintenance, will be developed and empirically validated,
to further show its viability in terms of measurable process efficiency increases.
Finally, it will be researched which visualization techniques are most appropri-
ate for presenting (operation) data on software operation summaries and other
media.

141

Chapter 6 — Leveraging SOK for Prioritization of Maintenance Tasks

142

7
Becoming Responsive to Service Usage

and Performance Changes

ABSTRACT

Software vendors are unaware of how their software performs in the field. They
do not know what parts of their software are used and appreciated most and
have little knowledge about the behavior of the software and its environment.
In this paper we present a metrics-based approach that is used by software
vendors to create real-time usage reports, based on data gathered by leverag-
ing aspect-oriented programming techniques. This approach enables software
vendors to respond quickly to performance and usage changes in their service
software, both at specific customers and concerning the service software in gen-
eral. We show that by using this approach, vendors can make informed de-
cisions with respect to software requirements management and maintenance.
The metrics and usage reports are validated by way of a case study at a Dutch
software vendor. While validation shows high potential of the approach, a suc-
cessful implementation will require change management at the software ven-
dor.∗

∗Thiswork has been published as Becoming Responsive to Service Usage and Performance Changes by
Applying Service Feedback Metrics to Software Maintenance in the workshop proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2008) [Van der
Schuur et al. 2008]. It is co-authored by Slinger Jansen and Sjaak Brinkkemper.

143

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

7.1 INTRODUCTION

Nowadays, a lot is asked from software vendors. Their organizations have to
be dynamic and agile, highly responsive to changes, while developing software
at high speed, low cost and according to high quality standards. Two trends
can be observed. First, a shift from Object-Oriented Development [Booch 2004]
to Service-Oriented Development [Newcomer and Lomow 2004] can be per-
ceived: software vendors focus on the development of (SOA)Web services and
online, rich internet applications instead of offline, component-based desktop
applications [Ibrahim et al. 2007]. In past years companies like Google, Ya-
hoo and Microsoft have developed successful online applications like Gmail,
Flickr, andOffice Live. Second, while software vendorsmay have implemented
a particular form of software usage data gathering mechanism analogue to Mi-
crosoft’s error reporting functionality [Brelsford et al. 2002], few software ven-
dors actually use the data that is collected. For example, still only very few
software vendors make use of usage reports. The Dutch National Customer
Configuration Benchmark Survey 2007 [Jansen et al. 2008] concludes that only
28% of the software vendors sell software that automatically composes usage
reports and shows that only 30% of the software vendors automatically com-
pose and send bug reports.

In this paper we introduce Service Knowledge Utilization (SKU) as an
approach to increase a software vendor’s flexibility, and responsiveness to
changes in the performance and usage of its service-based, online software,
at specific customers and concerning its software in general. Furthermore, we
present the SKU report, a report that quantifies the usage and feedback of a soft-
ware vendor’s service-based software and contains three metrics-based indices
that express software quality. In literature, metrics are used to measure the
quality of a service (QoS) [Menascé et al. 2001, Yu and Lin 2005] and suggested
as useful information that an infrastructure for managing and monitoring soft-
ware can collect [Farrell and Kreger 2002].

In the SKU report presented in section 7.2, metrics are used to illustrate and
summarize changes in software performance and usage, based on gathered
software usage and feedback data. Section 7.5 details Nuntia, a software pro-
totype based on aspect-oriented programming that provides a concrete SKU
implementation, including data gathering and SKU report generation function-
ality. A case study at a Dutch software vendor was performed to validate both
the report and the prototype. While software usage data gathering may eas-
ily result in significant performance loss of the software being traced, results
show that the integration of our prototype with target software has a negli-

144

Service Knowledge Utilization

gible effect on the performance of the target software. Furthermore, research
validation shows that the SKU report is considered valuable and supportive
in management meetings on release management, requirements management
and software maintenance. All case study results are presented in section 7.6.
Finally, section 7.7 details conclusions and future research.

7.2 SERVICE KNOWLEDGE UTIL IZATION

To enable a software vendor developing service-based software to becomemore
flexible and responsive to changes in the performance and usage of its software,
knowledge about the usage of the software by its end-users, as well as the uti-
lization of this knowledge is of high importance. We define SKU as follows:

Service Knowledge Utilization — Using service performance, usage
and feedback knowledge to support the software development and
maintenance processes and make software vendors more flexible and
responsive to service performance and usage changes, both at specific
customers and concerning their software in general.

As already argued byMendelson and Ziegler [Mendelson and Ziegler 1999],
information awareness (knowing what is going on in the surrounding world) en-
ables enterprises to anticipate changes in the demands to their products and
services. The authors define ‘Listening to the Customer’ as the first process that
can be utilized to increase the information awareness of an enterprise [Mendel-
son and Ziegler 1999]. In order to improve their customer and information
awareness, enterprises should consider their customers as partners and as the
primary source of information, innovation and renewal.

In this paper, we present and validate the SKU report as an instrument to
contribute to a software vendor’s information awareness increase. The SKU
report quantifies the service usage and feedback of all participants in a soft-
ware vendor’s software supply network that have licensed one or more of the
vendor’s services, and contains three indices that express the service quality in
terms of performance, usability and customer usage.

7.2.1 SKU Report

As mentioned, the SKU report quantifies the service usage and feedback of all
participants in a software vendor’s software supply network that have licensed
one ormore of the vendor’s services. All content of the report is generated from
(service) software usage and feedback data gathered during a pre-determined

145

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

time period. The SKU report contains data and information about a number of
concepts:

Customers
The software vendor’s customers of which the usage and feedback data
are gathered, are represented by the set C, which is defined as C =

{c1, ..., cn}.

Services
The services developed and published by the vendor are represented by
the set S , which is defined as S = {s1, ..., sp}. Each customer c ∈ C has
licenses for a collection of services. The services licensed by customer ci

are represented by the set S i, which is defined as S i = {si1, ..., siv}.

Methods
Every service s j ∈ S has a set of publishedmethods. Themethods of a ser-
vice s j are represented by the set M j, which is defined as M j = {m j1, ...,m jq}.

Events
The set of all events that took place during the execution of all services
s ∈ S is defined as E = {E1, · · · , Ep}. The set of events that took place
during the execution of a service s j is represented by the set E j, which is
defined as E j = {e j1, ..., e jr}.

Event Types
A number of event types exist, which are defined as T = {t1, · · · , tw}.

The concepts above are subject to three constraints. First, the number of ser-
vices a software vendor’s customer ci has licensed can not be larger than the
number of services the software vendor has published. Second, the SKU re-
port only contains data and information about licensed services: S i ⊆ S . Third,
every event e ∈ E has an unique type t ∈ T : ∀e ∈ E : t(e) ∈ T .

For each method of each service, the report contains seven metrics, calcu-
lated in order to quantify and measure the status and quality of the services
licensed by a vendor’s customers.

7.2.2 SKUMetrics

The research community has developed awide range ofmetrics tomeasure and
quantify the quality of services [Kalepu et al. 2003]. The metrics listed below
were selected by way of a literature study focussing on the extent the metrics

146

Service Knowledge Utilization

express service performance, usability and usage. This range of metrics (Re-
liability, Throughput, Latency, Accuracy, Availability, Usability, Reputation) is
suggested by Farrell and Kreger [Farrell and Kreger 2002] as useful information
that a software infrastructure for managing and monitoring Web services can
collect for aWeb service, and is also used inQoS-related research [Menascé et al.
2001, Yu and Lin 2005]. In the context of this paper, the metrics are used to con-
struct three service indices that express the status of service-based software.

Reliability
The term ‘Reliability’ has a number of definitions. It is defined as ‘the
probability that a request is correctly responded within a maximum expected time
frame’ [Zeng et al. 2003] or ‘the quality aspect of a Web service that represents
the degree of being capable of maintaining the service and service quality’ [Sa-
hai et al. 2001]. Analogue to [Mani and Nagarajan 2002], we define relia-
bility as ‘The rate of successful responded requests ’.

Throughput
We define the throughput of a service as ‘the number of successfully com-
pleted service requests over a time period’ [Ran 2003]. Often, throughput is
measured in requests per time unit [Von Bochmann et al. 2001].

Latency
Latency is defined as the ‘time taken between the moment the service request
arrives and the moment the request is being serviced’ [Ran 2003]. We define
the latency of a service as ‘the round-trip time between sending a request and
receiving the response’ [Sahai et al. 2001]. The throughput of a system (ser-
vice) is related to its latency.

Accuracy
In a generic way, ‘accuracy’ is defined as ‘percentage of objects without data
errors such as misspellings, out-of-range values, etc.’ [Naumann et al. 1999].
More specifically, we define accuracy as ‘the error rate produced by a ser-
vice’ [Ran 2003]. In practice, thismetric indicates the amount of exceptions
(both handled and unhandled) a service or service method generates.

Availability
The term ‘Availability’ has various definitions: ‘The quality aspect of whether
theWeb service is present or ready for immediate use, and represents the probabil-
ity that a service is available.’ [Sahai et al. 2001], ‘The percentage of time a source
is accessible based on technical equipment and statistics’ [Naumann et al. 1999]
or ‘The probability a system is up’ [Ran 2003, Von Bochmann et al. 2001]. In
this paper, we use the latter definition.

147

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

Usability
Seffah et al. [Seffah et al. 2006] developed a consolidated usability mea-
surement model based on the research of Shackel [Shackel 1991] and
Nielsen [Nielsen 1993]. Among other criteria, the ‘minimal action’ crite-
rion is identified: ‘The capability of the software product to help users achieve
their tasks in a minimum number of steps’. Given the nature and role of Web
services in the context of this research — users actively ‘interact’ with a
(process-centric or enterprise level) Web service via its graphical user in-
terface — the usability of Web services is defined as the ‘minimal action’
criterion: the number of steps a user has to perform to achieve a particular
task.

Reputation
‘The reputation of a service is a measure of its trustworthiness. It mainly depends
on end user’s experiences of using the service. Different end users may have
different opinions on the same service’ [Zeng et al. 2003]. In the context of
this research, reputation of a service is expressed in a ‘user grade from 1 to
10 based on personal preferences and professional experience’ [Naumann et al.
1999].

The notation of the metrics defined above is depicted in table 7.1. m jk repre-
sents a method of a service s j published by a software vendor.

Notation Description
qRel(m jk) The reliability of a method m jk

qT (m jk) The throughput of a method m jk

qL(m jk) The latency of a method m jk

qAcc(m jk) The accuracy of a method m jk

qAv(m jk) The availability of a method m jk

qU (m jk) The usability of the graphical interface of a method m jk

qRep(m jk) The reputation of a method m jk

q{Rel,··· ,Rep}S LA (s j) The minimal (or maximal) value of a metric
(specified as a part of an SLA or service contract)

Table 7.1 Metrics notation

Before further detailing how the service indices are constructed, it is impor-
tant to observe that servicesmay be bound to service contracts and correspond-
ing service levels, specifying the required performance of a service. Specifi-
cally, such a contract is a Service Level Agreement (SLA) between the service
provider and the service requester, inter alia describing (un)acceptable service

148

SKU Report Indices

levels [Verma 1999, Lewis 2001]. A service level is defined as some mark by
which to qualify acceptability of a service parameter [Lewis 2001], for example
a guaranteed minimal availability of a service.

Concerning the construction of the service indices, for all metrics, service
levels are used to calculate the metric scores. Depending on the type of service
level (minimal or maximal), two types of metric scores can be identified. The
first type applies to the metrics Reliability, Throughput, Availability and Rep-
utation. If the Reliability, Throughput, Availability or Reputation of a service
method is equal to or greater than the corresponding minimal value of that
metric prescribed in the SLA, q{Rel,T,Av,Rep}S LA (s j), the metric score of the service
method on thatmetric r{Rel,T,Av,Rep}(m jk) is equal to 1.0— themethod is operating
according to its service level. Otherwise, the metric score is equal to the Relia-
bility, Throughput, Availability or Reputation metric value, divided by the cor-
responding SLA value for that metric. If the metric score of a method is equal
to 0.0, the method is failing maximally (because its service is offline, or always
throwing an unhandled exception, for example) with respect to its SLA.

The second metric score type applies to the metrics Latency, Accuracy and
Usability. If the Latency, Accuracy or Usability of a service method is equal
to or less than the corresponding maximal value of that metric prescribed in
the SLA, q{L,Acc,U}S LA (s j), the metric score of the service method on that metric
r{L,Acc,U}(m jk) is equal to 1.0 — the method is operating according to its service
level. Otherwise, the metric score is equal to the Latency, Accuracy or Usability
metric SLA value, divided by the value of that metric. Again, if themetric score
of a method is equal to 0.0, the method is failing.

7.3 SKU REPORT INDICES

The metric scores r{Rel,T,L,Acc,Av,U,Rep}(m jk) are calculated to eliminate the differ-
ences between the domains of the metrics listed in this section, and to enable
easy service status and quality comparison. Based on the resultingmetric score
values, three service indices are constructed.

Service Performance Index
Represents the average performance of the services the software vendor
has published.

Service Usability Index
Represents the average usability of the services the software vendor has
published. Gives an indication of to which extent users value and rate the

149

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

services of a software vendor, and to which extent they are satisfied with
using those services.

Service Client Utilization Index
Represents to which extent the services the software vendor has pub-
lished, are utilized by the clients that have licensed the particular services.

All indices are calculated for each service s j that is contained in the SKU
report, as well as for each method m jk ∈ M j of each service s j, as well as for
all services six of a customer ci. Furthermore, three ‘aggregate’ service index
values are calculated, representing the status of all services that are licensed by
a customer. The construction of the service indices is described below.

7.3.1 Service Performance Index

The Service Performance Index expresses the quality of a method (or service,
or collection of services) in terms of its reliability, capacity, response time, error
rate and on-line time. π(m jk) represents the value of the Service Performance
Index for a service method m jk. The Service Performance Index of a method
m jk is calculated as follows:

π(m jk)) = rRel(m jk) · rT (m jk) · rL(m jk) · rAcc(m jk) · rAv(m jk) (7.1)

Equation 7.2 shows how the Service Performance Index is calculated for a
service six ∈ S i — where S i is the set of services licensed by customer ci — as
the average performance of its methods.

π(six) =

q∑
k=1

π(mixk)

q
(7.2)

The equation below illustrates how to calculate the Service Performance In-
dex for a customer ci. This index expresses the average performance of the set of
services that this customer has licensed. The constant factor M is added to stress
the aggregate character of the customer-level service indices, and improve the
comparability of customers based on those indices. With this constant factor
included, customer-level service indices ‘rate’ the software vendor’s customers
based on the services they have licensed, on a scale of 0 to M. M = 5, M = 7 and
M = 10 are proven intuitive by research [Dawes].

π(ci) = M ·

v∑
x=1

π(six)

v
(7.3)

150

SKU Report Indices

7.3.2 Service Usability Index

The Service Usability Index expresses the quality of a method (or service, or
collection of services) in terms of the number of actions a user has to perform
to activate the method, error rate, response time, and user feedback. υ(m jk)
represents the value of the Service Usability Index for a service method m jk.
Given a servicemethodm jk, its ServiceUsability Index is constructed as follows:

υ(m jk) = rU(m jk) · rAcc(m jk) · rL(m jk) · rRep(m jk) (7.4)

Equation 7.5 shows how the ServiceUsability Index is calculated for a service
six ∈ S i —where again, S i is the set of services licensed by customer ci —as the
average usability of its methods.

υ(six) =

q∑
k=1

υ(mixk)

q
(7.5)

Equation 7.6 illustrates how to calculate the Service Usability Index for a
customer ci. This index expresses the average usability of the set of services
that this customer has licensed.

υ(ci) = M ·

v∑
x=1

υ(six)

v
(7.6)

7.3.3 Service Client Utilization Index

The Service Client Utilization Index expresses the quality of a method (or ser-
vice, or collection of services) in terms of the number of method requests over
a predefined period of time, response time, and user feedback. κ(m jk) repre-
sents the value of the Service Client Utilization Index for a service method m jk.
Given a service method m jk, its Service Client Utilization Index is constructed
as follows:

κ(m jk) = rT (m jk) · rL(m jk) · rRep(m jk) (7.7)

Equation 7.8 shows how the Service Client Utilization Index is calculated for
a service six ∈ S i — where again, S i is the set of services licensed by customer
ci — as the average client utilization of its methods.

κ(six) =

q∑
k=1

κ(mixk)

q
(7.8)

151

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

Equation 7.9 illustrates how to calculate the Service Client Utilization Index
for a customer ci. This index expresses the average utilization of the set of ser-
vices that this customer has licensed.

κ(ci) = M ·

v∑
x=1

κ(six)

v
(7.9)

Having presented all service index constructions on all levels (methods,
services and customers), note that all metric scores r{Rel,T,L,Acc,Av,U,Rep}(m jk) have
equal weight in the construction of each of the service indices. As detailed in
section 7.6, a software vendormay assign different weights to each of themetric
scores, in line with its strategy focus. A number of observations can be made.
First, the domains of the index values π(six), υ(six), κ(six), π(m jk), υ(m jk) and κ(m jk)
are equal to the domains of the metric scores.

In other words, when the value of, for example, π(six) for a service s is equal
to 1.0, the service is performing according to the metric values in its SLA. A
value of 0.0 indicates that a service is maximally failing in meeting its SLA.
Second, the domains of the service indices on customer level are as follows:

{π(ci), υ(ci), κ(ci)} ∈ [0,M]

Obviously, the change in domains is caused by the constant factor M in-
cluded in the formulas of all customer-level service indices. Third, note that
of all concepts, the ‘event’ concept is not mentioned within the construction of
the indices. This is because events are used to calculate the numerous metric
values. Similarly, the concept of an event type is introduced to enable event
categorization. In section 7.5, an example SKU report implementation is pre-
sented, as part of the description of the software prototypeNuntia that provides
SKU report generation functionality.

7.3.4 Related Work

In research, QoS metrics are often used in the process of web service discovery,
selection or composition. Yu and Lin [Yu and Lin 2005] propose a set of service
selection algorithms for web services with QoS constraints. Compared to the
work of Yu and Lin and others, our research focuses on the application of met-
rics as a means to achieve software quality goals and increase the responsive-
ness of software vendors to performance and usage changes in their software.
Farrell and Kreger [Farrell and Kreger 2002] propose types of information that
can be collected with respect to web service management, and indicate that

152

Research Approach

this information could serve as a basis for service usage monitoring. However,
the solutions the authors provide do not feature any form of (summarizing)
report functionality similar to the SKU report presented in this paper. Finally,
Papapetrou and Papadopoulos [Papapetrou and Papadopoulos 2004] present
an AOP-based logging tool for a component-based software. While their appli-
cation of aspect-oriented programming is similar, our solution is also utilized
with service-based software and environments.

7.4 RESEARCH APPROACH

Part of the research was the development of the SKU approach and the SKU
report, including its service metrics and indices. Furthermore, a software pro-
totype (section 7.5) was developed to provide an service knowledge utilization
implementation for software vendors developing service-based software. A
case study at a Dutch software vendor was conducted to validate the service
metrics and indices, as well as the SKU reports generated by the prototype.

7.4.1 Company Identification

Validation of the research outputs mentioned above was done by means of a
case study at a Dutch software vendor. The vendor develops and distributes
CAD software products for the building services industry, creating designs in
the ‘.dwg’ file format. The software vendor’s market leading product is now
used by more than 7000 draftsmen every day in the Netherlands and Belgium.
Founded in 1990, the vendor has set the basis for CAD software for contrac-
tors in the Netherlands and Belgium. With over 3800 customers and more than
8000 licenses sold, the vendor is market leader in its segment. The software
vendor approximately employs 100 employees. Recently, the vendor made its
product line available abroad as well. Since August, 2008, the first localized
editions were released for Belgium, France and the United Kingdom. In the fu-
ture, other localizationsmay be developed and released. The vendor’s software
development activities are mainly performed in the Netherlands.

7.4.2 Case Study Approach

In order to identify the case study company and gather facts on which the re-
sults of the case study are based, four case study techniques have been used.
Yin [Yin 2009] has defined six sources of case study evidence. Numerous
sources are utilized as part of this research.

153

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

First, ‘direct observations’ were made during the presence at the software
vendor. Development meetings where software developers and project lead-
ers presented details and progress concerning the development of the vendor’s
software products and services, where attended, for example. Second, a doc-
ument study was done. The vendor provided software architecture specifica-
tions, software manuals, process descriptions and numerous memos. Third,
the vendor’s software was studied. A training session was attended in order to
get familiar with the software, end-users of the software and the vendor’s train-
ing sessions. Furthermore, the source code of the software was examined. Fi-
nally, twenty semi-structured interviews have been conducted. An SKU survey
was designed specifically for each of the vendor’s departments that employed
people invited to the case study interview. Interviewees were asked to elabo-
rate on their survey answers and describe the ‘current’ situation with respect
to SKU at their department.

7.4.3 Hypotheses

Having implemented the software prototype successfully, it is expected that the
effects of the utilization of the Nuntia-generated SKU report by the software
vendor are twofold.

Decrease of Time to Market
It is expected that the software vendor’s time to market will be shortened.
Three causes can be identified. First, the internal communication of the
software vendor will be improved because the SKU report provides an
informed view on the performance, usability and usage of the software,
easing feature-related decision making and thus shortening the related
management meetings. Second, frequent analysis of the the SKU reports
potentially discloses end-user’s configuration and severe bugs earlier and
may help to reproduce bugs, possibly resulting in shorter overall devel-
opment cycles. Third, by effectively utilizing the software (usage) knowl-
edge gathered, performance and usage changes in the vendor’s software
potentially are expected and incorporated in the vendor’s projects at an
earlier stage, in a shorter amount of time.

Responsiveness Increase
The software vendor’s responsiveness (the speed at which changes are
implemented based on performance and feedback data), for example to
issues reported to its help desk, may increase when the vendor has imple-
mented the SKU prototype. With the SKU presented, the usage of soft-

154

SKU Software Prototype

ware is logged continuously. Furthermore, actions can be defined that
have to be executed when particular events occur and are logged. For ex-
ample, an action could describe that as soon as a severe exception occurs,
the help desk of the software vendor has to be informed.

7.4.4 Validation Methods

The research outputs (hypotheses, the software prototype and the SKU report)
were validated in three ways.

Interviews
To determine the correctness of the information interviewees provided
and the information gathered during direct observations, reflective ques-
tions were asked during the interviews, especially during the interviews
with key people of a department or the total organization. Furthermore,
project leaders, developers and help desk employees were asked to give
their opinion about the final prototype and its fit within the vendor’s or-
ganization.

Expert Validation
Before implementing the prototype, both the metrics and formulas used
to calculate the service indices of the SKU report generated by the soft-
ware prototype were reviewed and validated by the product managers of
the software vendor. Furthermore, the vendor’s product managers and
senior developers were asked to review the Nuntia-generated SKU re-
port. Specifically, they were asked to validate the value, relevance and
usefulness of the information contained in the report, as well as the hy-
potheses listed before). All experts received a set of statements related to
the SKU report and the hypotheses, which they were asked to confirm or
reject using a Likert scale (1: strongly disagree, 5: strongly agree).

Testing
Leaddevelopers and testers of the software vendor, aswell as the vendor’s
CEO were asked to test the software prototype in practice, inter alia in
terms of stability and performance.

7.5 SKU SOFTWARE PROTOTYPE

The goal of the software prototype, Nuntia, is to gather software usage and
feedback data from software products and services that are developed by soft-
ware vendors and are licensed by one or more participants in the vendor’s soft-

155

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

Service Layer

Business Layer

Data Access Layer

Business Logic Business Entities

Data Access Logic

Nuntia
database

LogService

Service

Code

Service Interface

Trace Component

Tracer

AOP Library

Cache

interoperability Layer

Report Component

Export LibraryReport Generator

Service Locator

Service ImporterUDDI Library

UDDI
registry End-user

SKU
report

Presentation Layer

Management web interface pages

ManagementService

Figure 7.1 Architecture of Nuntia

ware supply network, and to provide means to extract valuable real-time soft-
ware (usage) knowledge from the data gathered, in order to increase a software
vendor’s flexibility and responsiveness to changes in software usage and per-
formance.

In order to gather service usage data of a service oriented architecture’s
(SOA) services, Nuntia can be easily integrated in a SOA by using the UDDI-
based Service Locator. To actually gather service usage and feedback data,

156

SKU Software Prototype

Nuntia’s trace component is integrated in the target service. In addition, Nuntia
provides an SKU report generation implementation: when service usage and
feedback data is gathered, SKU reports based on this data are generated with
the Report Generator. Finally, two web services are part of Nuntia. First, the
ManagementService forms the interface to the Nuntia database and is used by
Nuntia’s web interface to enable data manipulation. Second, the LogService
is used to gather, cache and store service usage and feedback data. While the
ManagementService is used by the software vendor itself to register its cus-
tomers and services, the LogService is also accessible for (pilot) customers and
other partners in the vendor’s software supply network, in order to register
their service usage and feedback. See figure 7.1.

Nuntia was developed using Visual Studio 2008 and the .NET framework
3.5, both from Microsoft [VS2008]. All code was written in C# 3.0. Concern-
ing Nuntia’s trace component, one technique is utilized extensively: Aspect-
Oriented Programming (AOP), created by Kiczales et al. [Papapetrou and Pa-
padopoulos 2004]. AOP is a programming paradigm that contributes to the
area of separation of concerns. Some concerns, cross-cutting concerns, cannot be
separated cleanly, because they are related to numerous, distinct modules of a
program (the concerns ‘cut’ across different program modules). Examples of
cross-cutting concerns are security and logging. Both concepts are often needed
throughout all modules a program consists of, because the need to log excep-
tions exists program-wide, for example. In AOP, code that is needed program-
wide (a so-called advice), is injected into the existing code of the program, at
locations (point-cuts) determined by the programmer. The combination of an
advice and a point-cut is called an aspect [Filman et al. 2005]. For the process of
advice injection (also referred to asweaving) to take place, the programmer does
not have to adjust the program code structurally. Next, the trace component is
described in more detail.

7.5.1 Tracing

Nuntia’s trace component consists of three elements: an aspect-oriented pro-
gramming (AOP) library, a tracer and a cache component.

AOP Library
Nuntia utilizes the (compile-time) weaving functionality of the Post-
sharpAspNet to trace the usage and performance of services. Post-
sharpAspNet was released in February, 2008 and is an experimental li-
brary based on the PostSharp Laos aspect weaver [Fraiteur 2008].

157

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

Tracer
The tracer contains advices that are inserted at the point-cuts in the ‘tar-
get’ service code. Specifically, the tracer contains four aspects that cover
generic events related to the web service’s methods: OnEntry, OnSucces,
OnException and OnExit. In those aspects, relevant service environment
and status information is saved in an Event object (in the case of an excep-
tion, for example, the most recent stack trace and the exception message
are stored in this object). Next, the Event object is sent to the cache.

Cache
When a service has to process a lot of requests from a great number of
end-users or external services, both database load and network traffic
may raise to high levels. In order to prevent network congestion, a cache
is part of the trace component. When the cache capacity is reached, the
cached is flushed: using Nuntia’s LogService, all Event objects are in-
serted in the Nuntia database and the cache is cleared.

7.5.2 Report Generation

When receiving a report generation request, the report generator requests all
relevant data related to the time frame, customers and services from the Nun-
tia database. Next, the report generator calculates metric scores and service
indices for the selected services (including the services’ web methods) of a se-
lected customer in the selected time period. When no data is available for a
particular metric, the metric score is set to 1.0 (the SLA requirement is met).
This is done to prevent negative influences on the metric scores and service in-
dex values by methods that are not called within the selected time frame (and
for which no data is stored)1. When this is the case, a ‘not representative’ anno-
tation is added to the data. All metric score values have a color that indicates
their status. Green indicates that the SLA value is met, orange indicates that
the SLA value is not met and red indicates that the metric score is lower than
half the SLA value.

Concerning the customer-level service index calculation: the constant M is
equal for all reports can be set via Nuntia’s web interface. Apart from the met-
ric score and service indices calculation, a list of all events occurred within the
selected time frame is included in the SKU report. For example, for each excep-
tion event, the list contains exception details and stack trace and detailed en-
vironment information. Furthermore, the list contains data of all request and

1In other words: no conclusions concerning performance, usability, availability, etc. can be
drawn.

158

Results

Figure 7.2 Screenshot of a SKU report generated by Nuntia

response events, as well as user interface paths for all user interface events.
When all required data is gathered, the data is sent to an export library which
compiles all data into a report that is presentable to the end-user. Figure 7.2
depicts a screenshot of a Nuntia-generated SKU report (M = 5).

7.6 RESULTS

To gather the results presented in this section, a number of testswere conducted
with a customized version of the web edition of the vendor’s CAD software.
Performance measurement and exception gathering code, feedback gathering
functionality (to calculate the Reputationmetric) and a user interface step count
algorithm (to calculate the Usability metric) were implemented in this version.
As mentioned, experts were interviewed to validate the results. Next, valida-
tion results of two main research outputs are presented.

7.6.1 Prototype Performance

The performance of a software usage and feedback data gathering solution is
key to the value and success of its integration with live software. A number of
performance tests were conducted to measure the influence of Nuntia on the
performance of the target software. The total delay ∆ caused by the tracing
process during the execution of a service s j can be expressed as follows:

∆ =

r∑
z=1

δ1(e jz) + δ2(e jz) =

r∑
z=1

ρT (e jz) − ρO(e jz) (7.10)

159

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

. . .where e jz represents an event that occurred during the execution of service
s j (e jz is an element of the set that represents all events that occurred during the
execution of s j: e jz ∈ {e j1, · · · , e jr}, or e jz ∈ E j), δ1 represents the time needed to
process the advice code associated with the entry of a web method (δ1) and δ2

is the time needed to process the advice code associated with the exiting of the
webmethod. Furthermore, ρT and ρO represent the total webmethod execution
time with and without Nuntia integrated, respectively. ∆ then is equal to the
sum of both part delays caused by all events e jz ∈ E j, or ∆ =

∑r
z=1 δ1(e jz)+δ2(e jz).

Moreover, ∆ can be expressed in terms of total web method execution times.
Defining ρT and ρO as the total web method execution time with and without
the prototype integrated, respectively, ∆ is defined as the sum of the differences
between those times for all events that occurred during the service execution,
or ∆ =

∑r
z=1 ρT (e jz) − ρO(e jz). Numerous test sessions have been conducted. The

results of four recent sessions are presented2 in table 7.2. T represents the total
test session duration in minutes. To effectively measure performance differ-
ences, all tests contained the same steps and were conducted in the same order.
All tests conducted within one session (A, B, C, D) were based on identical test
plans.

∑r
z=1 ρO(e jz)

∑r
z=1 ρT(e jz) ∆ T

A 36.15 47.44 11.29 10 min.
B 23.56 40.68 17.13 5 min.
C 30.94 36.91 5.98 5 min.
D 15.87 23.06 7.19 5 min.

Table 7.2 Performance test results

Tests were executed by the authors, as well as testers and product managers
of the CAD vendor. When measuring ρT (e jz), both the Nuntia database and
the LogService were installed on an external machine (when only one of those
components is located externally, ∆ has a lower value). No performance opti-
mizations were done: no indexes were added to tables in the Nuntia database
and both the target software and Nuntia were compiled and running in debug
mode. Cache capacity was set to 30 events.

All test results show a low ∆/T rate: the delay caused by the tracing process
is spread over a relatively long time. Furthermore, in all test sessions except B,
5 < ∆ < 15. In test B, the test machine was completely restarted after each test.
As detailed in table 7.2, this increases∆ significantly, due to required connection

2All values represent seconds, except when indicated differently.

160

Results

and plugin initialization. Test results also show a low average delay per event
(in seconds, not listed in table 7.2):

∆A + ∆B + ∆C + ∆D

rA + rB + rC + rD
= 0.008 (7.11)

This is in line with the opinion of the experts that were asked to validate the
prototype: while all experts recognized that the integration of the prototype
with the target software entails some performance loss and that the tracing ef-
fects during heavy usage are unknown, they consider the performance effects
as negligible. Furthermore, both product and project managers expect Nuntia
to be integrated with their software. However, two project managers indicated
that Nuntiawill not improve the vendor’s responsiveness on its own: the vendor
will have to implement a process to take action based on the gathered knowl-
edge (fix bugs revealed by exception data in the SKU report, for example) and
assign employees to this process, also to prevent a ‘software usage data flood’
towards the organization.

7.6.2 SKU Report

Overall, the experts indicated that the report contains data that is valuable to
software vendors and that the report supports informed decisionmaking in the
areas of software development and software maintenance. Concerning the re-
port’s service indices, experts indicated all service indices should be included in
the SKU report. In their opinion, especially the service client utilization index
was considered a valuable indication. This is in line with earlier interviews and
observations: both developers and project managers indicated that the vendor
has difficulties in determining whether or not an existing feature is still used
(and should not be removed yet) or whether a new feature will be used by their
end-users.

Except for the throughput, availability and reputation metrics, the experts
agreed that all metrics proposed should be included in the report. They de-
noted that the throughput and availability metrics especially are of importance
with respect to process-centric services. Unlike the vendor’s service software
(which can be characterized as a public enterprise service), services of this
type have to meet a specific demand, and thus guarantee a particular level of
throughput or availability. Project and product managers also indicated that
only proper and serious feedback will be valuable. Therefore, they proposed
to include the reputation metric primarily with pilot customer tests. Further-
more, the availability metric was considered as less valuable because the soft-

161

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

waremay not be the cause of a low availability score, the experts reasoned. The
events overview in the reportwas considered optional and only valuable for de-
bugging purposes. It was suggested to calculate the metrics on more levels of
detail and to base the report structure on the structure of the target software.

While the data contained in the report was expected to be taken into account
when taking decisions related to operational, tactical and strategical manage-
ment, product managers indicated that the SKU report will be primarily used
in tactical management meetings (release management meetings, for example)
and added that the report will have to be summarized in order to be of use in
strategical meetings. It was also denoted that a successful SKU implementa-
tion would require some form of change management: people will have to get
used to involve the knowledge contained in the report in their daily work, for
example. The report will be generated once a month.

7.7 CONCLUSIONS AND FUTURE RESEARCH

Case study results show that Nuntia is expected to contribute to a software ven-
dor’s responsiveness to software performance and usage changes, and thus is
an effective SKU implementation. The vendor has decided to integrate Nuntia
with its live software in the near future because of the negligible performance
loss this integration involves and the valuable information the SKU report pro-
vides.

The SKU implementation is expected to contribute to a software quality in-
crease on the short term and a time-to-market decrease on the long term: the
vendor noted that it will first have to invest into the process of acting upon the
knowledge, before it is able to structurally improve its responsiveness based
on the gathered knowledge. The vendor expects to base software maintenance
processes (requirements elicitation and bugfix priority assignment) on the SKU
reports generated by Nuntia, and be able to react before an end-user calls for
support. Finally, Nuntia’s architecture (loosely-coupled services, use of AOP)
enables easy integration with other software. We consider both hypotheses
(decrease of software vendor’s time to market and increase of vendor’s respon-
siveness) supported by the research validation.

While the results of this research are promising, further research is needed to
improve the applicability of the SKU report and the performance of the proto-
type. Wewill research datamining techniques and software tomography [Bow-
ring et al. 2003] to extract sophisticated statistics from large software knowledge
repositories and integrate these in the report, and keep performance loss of the
target software negligible under heavy use circumstances. Future research will

162

Conclusions and Future Research

also focus on integration of service knowledge in software development envi-
ronments, SKU implementation change management requirements, and feed-
back visualization techniques.

163

Chapter 7 — Becoming Responsive to Service Usage and Performance Changes

164

Part IV

Conclusion

165

8
Conclusion

In the introduction of this dissertation, the main research question is formu-
lated as follows:

MRQ —How can software processes of product software vendors be improved
through software operation knowledge?

This dissertation addresses this question through construction of the soft-
ware operation knowledge reference framework, which defines the parties, per-
spectives and processes that constitute the software operation knowledge life
cycle. In the chapters of this work, the software operation knowledge concept
and framework are defined and empirically evaluated. Each of the five software
operation knowledge life cycle processes is addressed by one or more chapters
(see table 1.1).

In the following sections, each of the six sub research questions are answered
and findings are evaluated. Next, limitations of this research are discussed. Fi-
nally, a reflection on this research is provided by placing research results and
implications in a broader context, and directions for future research are de-
scribed.

8.1 CONTRIBUTIONS AND EVALUATION

The research in this dissertation is structured around six research questions.
This section answers each of the questions, and briefly evaluates the findings
that correspond to each of the questions.

167

Chapter 8 — Conclusion

RQ 1 —What is the concept of software operation knowledge?

In answer to this research question, a software operation knowledge defi-
nition and reference framework are proposed. The definition is composed of
four types of operation knowledge that encompass and categorize the plethora
of definitions and metrics that exist to respectively describe and measure soft-
ware operation. Furthermore, the software operation knowledge reference
framework defines the life cycle of software operation knowledge and illus-
trates (perspectives on) potential uses of such knowledge in the improvement
of a vendor’s products and internal software processes. Both the software op-
eration knowledge definition and reference framework were evaluated and re-
fined through the results of focus group discussions and extensive case studies
at three software-producing organizations. The utility of the SOK framework
is demonstrated, and the demand for such a guiding substrate regarding SOK
utilization is confirmed. With the SOK definition and reference framework,
meaning and potential of the software operation knowledge concept are posi-
tioned.

RQ 2 — How can software operation knowledge practices within software
ecosystems be classified?

A classification of successful operational software ecosystem practices that
may help software-producing organizations to effectively utilize and propagate
knowledge of the in-the-field operation of their software, and therewith ad-
dress challenges that result from ecosystem participation, provides the answer
to this research question. The classification is constructed based on case studies
with four vendors that successfully address challenges resulting from software
ecosystem participation through utilization and propagation of software oper-
ation knowledge. Based on key derivations from these case studies, software
ecosystem orchestration practices and software operation knowledge propa-
gation practices are classified along dimensions of software ecosystem scope
level and ecosystem life cycle phase. The classification illustrates the value and
importance of software operation knowledge within the context of software
ecosystems.

RQ 3 — How can software maintenance effort be reduced through generic
recording and visualization of operation of deployed software?

The answer to this research question is a technique for generic acquisition
and presentation of software operation knowledge. The technique enables soft-

168

Contributions and Evaluation

ware vendors to acquire SOK independent of target software, allows vendors to
get a uniform insight in operation of their software in the field, and contributes
to reduction of software maintenance effort. Furthermore, a prototype tool is
developed that implements this technique. Utility and effectiveness of the tech-
nique are evaluated based on a field study (consisting of two case studies and
an experiment) with the tool, as well as focus group discussions regarding the
technique and the tool. Based on empirical evaluation results, the SOK acquisi-
tion andpresentation technique is considered to effectively reducemaintenance
effort. The tool demonstrates that software operation can be recorded, visual-
ized and replayed independently from target software. Furthermore, the tool
increases comprehension of in-the-field software operation, and is considered
to reduce the time needed to analyze software operation failures.

RQ 4 — How can product software processes effectively be improved with
acquired information of in-the-field software operation?

This research question is answered through a template method for integra-
tion of software operation knowledge in existing software processes, and a set
of four lessons learned that was created based on an action research study of
ten months, during which the method was instantiated for three software pro-
cesses of a European software vendor. Using the method, vendors are sup-
ported in (1) identification of relevant and valuable operation information, (2)
analysis of target processes and their integration environment, (3) integration
of selected information in, and transformation of, target product software pro-
cesses, and (4) presentation of integrated operation information. The method
demonstrates how product software processes can be improved pragmatically
but measurably, without adhering to strict requirements from cumbersome
maturity models or process improvement frameworks. The resulting lessons
learned serve as guiding directions for future uses of the template method.

RQ 5—Can prioritization of softwaremaintenance tasks be improved through
the concept of a software operation summary?

In answer to this research question, the concept of a software operation sum-
mary (abbreviated SOS; a SOK presentation medium that is based on recent in-
the-field operation of a vendor’s software) is introduced as a strive to support
software processes by providing software operation knowledge, more specifi-
cally, to improve prioritization of software maintenance tasks by fostering the
reach of consensus on such prioritization. Soundness and validity of the sum-
mary have been evaluated through an extensive survey among Dutch product

169

Chapter 8 — Conclusion

software vendors as well as a case study at a European software vendor. Re-
sults confirm (1) the lack of consensus experienced between different employee
roles, (2) the demand for a software operation summary, particularly in prepa-
ration of (sprint) planning, (software) development and bug fixing activities,
and (3) that a software operation summary is expected to foster reach of con-
sensus. We demonstrate how crash report data can be identified, such that a
software operation summary based on these data fosters the reach of consensus
on prioritization of software maintenance tasks. Software vendors can instan-
tiate the SOK integration template method (see chapter 5) to tailor the contents
of an SOS, and its underlying data types, to their needs and preferences.

RQ 6 — How can responsiveness to changes in service performance and us-
age be increased through utilization of knowledge of in-the-field software oper-
ation?

In answer to this research question, the concept of service knowledge uti-
lization (SKU) is introduced as an approach to increase a software vendor’s
flexibility, and responsiveness to changes in the performance and usage of its
service-based, online software. Furthermore, a SOK presentation tool is pre-
sented that generates SKU reports, which are composed of three SKU indices
that express service performance, usability and client utilization. Both the tool
and SKU reports are empirically evaluated through an extensive case study
at a Dutch software vendor. Evaluation results show that the SKU report is
composed of metrics and indices that are valuable to software vendors. More
specifically, results indicate that the tool contributes to the responsiveness of
a software vendor to changes in software performance and usage: the reports
it generates, support informed decision making in the areas of software devel-
opment and software maintenance. The SKU report, including its metrics and
indices, therefore is our answer to this research question.

8.2 IMPLICATIONS

This dissertation research contributes to several areas in both research and in-
dustry. Two main implications of this research are described next.

8.2.1 Exposing Software Operation Knowledge in the Product Software
Domain

The research carried out in this dissertation is an important step in positioning
the concept of software operation knowledge in both the industrial and scien-

170

Implications

D
ev

el
op

m
en

t
pe

rs
pe

ct
iv

e

- Release planning
- Design methods

Requirements and
Architecture

- Programming
- Testing
- Configuration Mgmt.

Development

- Delivery
- Deployment
- Licensing

Implementation

- Performance monitoring
- Crash reporting
- Usage tracing

Operation

So
ci

et
al

pe

rs
pe

ct
iv

e
- Intellectual property
- Import / export

Laws and Regulations

- Startups
- Business models
- Business culture

Entrepeneurship

- Markets
- Industry structures

Economy
C

om
pa

ny
 p

er
sp

ec
tiv

e

- Market analysis
- Product lifecycle management
- Technology management

Product Strategy

- Services portfolio
- Marketing
- Localization and customizations

Sales and Services

Strategic Management

- Product investment
- Resource management
- International organization

Process and Quality

 - Method and project management - Knowledge management - Quality systems

- Technology
- Educational system
- Capital

Resource
Provisioning

Figure 8.1 Updated research framework for product software (adapted from [Xu and
Brinkkemper 2007, Jansen 2007])

tific domains of product software. By relating parties, perspectives and life cy-
cle processes with software operation knowledge, and by positioning those in
the software operation knowledge framework, the software operation knowl-
edge concept has been exposed in the scientific and industrial domains of prod-
uct software.

First, the software operation knowledge framework has contributed to prod-
uct software vendors’ awareness of the potential of software operation knowl-
edge. The framework enables vendors to position functioning software pro-
cesses in the life cycle of software operation knowledge, and identify which
life cycle process implementations are lacking or need to be improved. This
research provides guiding incentives that may encourage and inspire vendors
to implement processes of the software operation knowledge life cycle (e.g., the
software operation knowledge acquisition and presentation technique and tool,
the software operation summary and the SKU report). This research demon-
strates that software operation knowledge forms a source of impulses for pro-
cess (e.g. in terms of efficiency) and product software improvement (e.g. in
terms of performance, quality, usability, appreciation, etc.).

171

Chapter 8 — Conclusion

Second, the software operation knowledge framework has contributed to
awareness of the concept of software operation knowledge in the product soft-
ware research domain: in-the-field software operation forms a new and emerg-
ing, distinct source of research opportunities and industry innovations. As a
recognition of the potential of the software operation knowledge in future re-
search initiatives and industry practices, the research framework for product
software has been updated to include the ‘operation’ state of software in its de-
velopment perspective (see figure 8.1). Further improvements will be added
to the framework, to cover and reflect future industry developments as well as
information systems research areas.

8.2.2 Improving Process Improvement

Apart from positioning software operation knowledge in the product software
domains, this research positions the concept of software operation knowledge
in the domain of software process improvement by establishing it as an in-
strument for process improvement. As stated in section 1.3, several prescrip-
tive software process improvement approaches such as CMMI are found too
time-consuming or too complex to comprehend, implement and maintain ef-
fectively [Kuilboer and Ashrafi 2000, Staples et al. 2007, Smite and Gencel 2009].

The SOK integration template method describes what (rather than prescrib-
ing how) software vendors can do to structurally integrate operation informa-
tion in their software processes. By distinguishing and describing eight tem-
plate activities preparatory to actual integration of software operation informa-
tion, and by incorporating these activities and corresponding template concepts
in the template method for integration of operation information, the software
operation knowledge concept has been exposed in the domain of process im-
provement.

We have demonstrated that through instantiation of the template method,
vendors can improve their functioning software processes through operation
information that is already available — in a pragmatic way but with measur-
able results, without introducing significant overhead and without adhering
to strict requirements from cumbersome maturity models or process improve-
ment frameworks. For example, using the template method, the number of
incoming crash reports at CADComp was reduced with about 45% (see chap-
ter 5). Concluding, the template method is therefore a powerful structure for
software process improvement.

172

Reflection

8.3 REFLECTION

When comparing the research approaches in this dissertation, particular pat-
terns can be observed. First, half of the research questions are answered
through multiple research methods. Second, to a certain extent, each of the
artifacts detailed in these chapters are the result of interpretive research: we
have studied real-world phenomena, and developed artifacts that help to un-
derstand or address certain phenomena.

As a reflection on this dissertation, we highlight strengths and potential risks
of using multiple research methods for (empirical) evaluation of artifacts. Fur-
thermore, the concept of hermeneutics is positioned in the context of interpre-
tive information systems research, and stages of constructivist hermeneutics are
identified based on the research that forms the basis of the artifacts presented
in this dissertation.

8.3.1 Mixed-method Studies in Information Systems Research

A fundamental question for information systems researchers is when to com-
bine different research methods to perform their studies [Falconer andMackay
1999]. Researchers both inside and outside the information systems research
community have attempted to answer this question [Gable 1994, Sandelowski
2000, Jansen and Brinkkemper 2008]. As a reflection on the mixed-method re-
search that is part of this dissertation, we highlight strengths and risks of the
chapters that present such research. Table 8.1 lists the strengths and risks of
combining focus group and case study research methods (SOK framework),
field study and focus group research methods (SOK acquisition and presen-
tation technique and tool) as well as survey and case study research methods
(software operation summary).

As illustrated by this reflection onmixed-method research, wehave observed
that combining quantitative and qualitative research methods allows for early
establishment of artifact viability and soundness, as well as fine-grained esti-
mation of artifact feasibility. However, both the quantitative and qualitative
methods used should respectively involve enough respondents and cases to
limit bias and reach broad evaluation of the artifact. Also, researchers should
be aware that artifact feasibility may be found insufficient at a too late stage,
particularly when a quantitative evaluation is performed prior to qualitative
evaluation. We conclude that combination of different research methods al-
lows for broad evaluation of artifacts, which may increase viability, soundness
and validity of these artifacts.

173

Chapter 8 — Conclusion

A
rtifact

R
esearch

m
ethods

Strengths
R
isks

SO
K
fram

ew
ork

(chapter2)
a)

Focusgroup
b)

C
ase

study
•

V
iability

and
soundness

ofartifactare
con-

firm
ed

atan
early

stage
•

Validity
and

applicability
ofartifactare

fur-
therrefined

through
inputfrom

industry

•
Biasorexperiencelack

offocusgroup
partic-

ipantsm
ightlead

to
distorted

case
selection

•
Lim

ited
num

ber
of

cases
m
ight

result
in

a
conflictbetw

een
confirm

ed
viability

and
re-

sulting
applicability

SO
K

acquisition
and

pre-
sentation

technique,
SO

K
acquisition

and
pre-

sentation
tool(chapter4)

a)
Field

study
b)

Focusgroup
•

D
iverse

artifactflaw
sare

discovered
and

can
be

resolved
atan

early
stage

•
Real-w

orld
feasibility

ofstableartifactissub-
sequently

estim
ated

by
m
anagem

ent-level
opinions

•
Feasibility

of
stable

artifact
m
ay

be
consid-

ered
insuffi

cientata
too

late
stage

•
A
rtifact

stability
requirem

ents
of

focus
group

participants
m
ight

not
correspond

w
ith

those
ofthe

researchers

Softw
are

operation
sum

-
m
ary

(chapter6)
a)

Survey
b)

C
ase

study
•

N
eed

forartifact,as
w
ellas

the
issues

itad-
dressesare

confirm
ed

ata
broad

scale
•

Validity
and

applicability
ofartifactare

fur-
therrefined

through
inputfrom

industry

•
C
lustered

or
lim

ited
num

ber
of

survey
re-

spondents
m
ight

result
in

disproportional
confirm

ation
of

issues,leading
to

insignifi-
cantcase

study
results

•
A
rtifactvalidity

m
ightbe

restricted
because

oflim
ited

representation
ofsurvey

outcom
es

by
case

study

Table
8.1

Strengthsand
risksofm

ixed-m
ethod

research
in

thisdissertation

174

Reflection

Figure 8.2 Hermeneutic framework for practical research [Cole and Avison 2007]

8.3.2 Constructivist Hermeneutics in Information Systems Research

Put simply, hermeneutics is a theory of interpreting texts. It is engaged in two
tasks: ascertaining the exactmeaning-content of aword or phrase, and defining
guidelines to facilitate explication of interpretive research [Bleicher 1980]. As
withmany philosophical traditions, hermeneutics is an umbrella term formany
different approaches. Whereas phenomenological hermeneutics aims at a faithful
description of the lived experience and is accomplished by a bracketing of the
researcher’s frame of reference [Van Manen 1997], constructivist hermeneutics
acknowledges the embedded nature of the researcher’s frame as the beginning
point in the process of coming to understand and interpret the phenomena un-
der study [Cole and Avison 2007]. One of the primary aims of constructivist
hermeneutics is to enact a methodology based on the recognition that every re-
search act is an act of interpretation [Maturana 1980]. Unlike grounded theory,
constructivist hermeneutics does not aspire to build a theory that can explain
the relationships between a set of propositions about some phenomena that
have been repeatedly tested, or that are widely accepted. Instead, attempts are
made to develop a framework of understanding that outlines a set of assump-
tions, concepts, and practices that constitute a way of viewing reality, such as
the hermeneutic framework for practical research of Cole andAvison [Cole and
Avison 2007] (see figure 8.2).

175

Chapter 8 — Conclusion

The benefits of a detailed hermeneutic reflection as part of information sys-
tem research are twofold: first, it supports researchers in achieving deeper lev-
els of understanding of their research efforts, as well as the phenomena being
studied. Second, such a reflection makes the researcher’s interpretive process
more transparent to other researchers, and therewith increases repeatability
of interpretive research. Despite these benefits, hermeneutics is neither well-
accepted normuch practiced in information systems research [Cole andAvison
2007]. The lack of formal structures for conducting hermeneutic research, the
difficulty in understanding and correctly using its technical language, and the
time needed to learn how to perform hermeneutic reflection have reduced its
attractiveness comparedwith, or as a component of, case study research, action
research and other established information systems research methods.

8.3.3 Stages of the Constructivist Hermeneutic Process

To reflect in a hermeneutic manner on the constructive process of the artifacts
presented in this dissertation research, we used the hermeneutic framework for
practical research of Cole and Avison that is depicted in figure 8.2. During this
reflective process, however, we discovered several imperfections in their frame-
work. We made several adaptions to the framework, which are represented by
our constructivist hermeneutic framework depicted in figure 8.3.

In the first place, similar to the framework of Cole and Avison, three rectan-
gular areas cover the so-called hermeneutic circle of unconscious understand-
ing and situated behavior as suggested by Heidegger [Heidegger 1927]. Spi-
rals of understanding arise from interpretations of executed actions or com-
ments [Cole and Avison 2007]. The purpose of this hermeneutic circle is to
reflectively accept or reject aspects of ‘fore-knowledge’, which can be respeci-
fied for theoretical development [Butler 1998, Cole andAvison 2007], ultimately
resulting in theory.

Our adaptions to the framework of Cole and Avison are threefold. First,
the constructivist hermeneutic framework explicates the concepts of fore-
knowledge (e.g. observations, opinions, prejudices, etc.) and theory (e.g. sys-
temization, categorization, classification, etc.). The fore-knowledge and theory
concepts are respectively positioned as inputs and outputs of the hermeneutic
circle, which is composed of stages of constructivist hermeneutics. Through
these stages, using reasoning, theory is built to understand, predict or control
new phenomena in terms of what we already understand.

Second, the explication stage represents the initial explication of considered
fore-knowledge, i.e., the position of the researcher with relation to the phenom-

176

Reflection

Fore-knowledge

Theory

Understanding

Explanation

Interpretation

observations

prejudices

objectives

ideas Explication

Conversation

Reflection

Reconstruction

Fusion

Generalization

taxonomy

classification

categorization

systemization

ontology

opinions

Figure 8.3 Constructivist hermeneutic framework (adapted from [Heidegger 1927, Cole
and Avison 2007])

ena of interest, researchmotivations aswell as own values and perceptions. The
explication stage furthermore covers formulating lines of inquiry, structuring
the research approach and choosing data sources and analytical strategies (in
their article, the authors describe these steps as the ‘preparation’ phase, but this
phase is missing in their figure). After the explication stage, initial understand-
ing of fore-knowledge is established.

Third, the generalization stage represents generalization of interpreted ob-
servations, ideas, etc. into new concepts constituting the resulting theory. Gen-
eralization is an essential property of valuable theory: it refers to the validity of
a theory in a setting different from the one where it was empirically tested and
confirmed. Since the field of information systems covers both science and pro-
fession, the generalizability of an information systems theory to different set-
tings is important not only for purposes of basic research, but also for purposes
of managing and solving problems that corporations and other organizations
experience in society [Lee and Baskerville 2003].

The constructivist hermeneutic framework reflects the constructivist
hermeneutic process that we experienced throughout the construction of the
artifacts that are presented in this dissertation. Furthermore, it clarifies the re-
lation with the information systems research framework [Hevner et al. 2004]:
using fore-knowledge from the knowledge base, the hermeneutic cycle is ex-
ecuted in parallel with development and justification of information systems
artifacts and theory, which can be applied in the appropriate environment and
potentially can be added to the knowledge base (see figure 1.4).

177

Chapter 8 — Conclusion

Through the framework, we attempt to increase maturity and transparency
of reflections on future information systems research, and therewith the
repeatability of such research. We are currently validating an alternative
hermeneutic cycle (dimensioning, categorization, naming, instantiation, presenta-
tion and beautification, revising) that is based on the constructivist hermeneu-
tic process we experienced throughout the construction of the classification
of identified orchestration and propagation practices (see table 3.3). Based on
two versions of this classification, figure 8.4 illustrates dimensioning, categoriza-
tion and naming phases of this alternative hermeneutic cycle. Dimensioning
refers to identification and revision of dimensions (e.g. the ‘Focus’ dimension
in figure 8.4), categorization refers to identification and revision of (sub) cate-
gories (e.g. distribution of the ‘Ecosystem’ and ‘Actor’ categories in figure 8.4)
and naming refers to establishing correct, consistent, complete and esthetically
pleasing textual representations of dimensions, categories and other aspects
(e.g. renaming of ‘Orchestration Phase’ in ‘SECO Orchestration Phase’ in fig-
ure 8.4). Empirical validation of our hermeneutic cycle will be subject of future
research.

8.4 L IMITATIONS AND FUTURE RESEARCH

Despite the attractiveness of the findings of this dissertation research, the re-
search is subject to some limitations that allude to carefulness when interpret-
ing these findings. Research limitations give rise to further research directions,
which are addressed subsequently.

8.4.1 Scientific Scope

Two main limitations of this dissertation research can be identified in terms of
the empirical evaluation of the research.

First, the empirical evaluation of the artifacts presented in this research is
limited to software vendors headquartered in the Netherlands. Although sev-
eral of those vendors have offices outside the Netherlands (some even out-
side Europe), and although we believe this scope is sufficiently large for our
study purposes, additional empirical evaluation at software vendors outside
the Netherlands is needed to further demonstrate the value of the artifacts in
other countries. Comparing observations across countries, markets and soft-
ware application types, mightwell contribute to the overall soundness and gen-
eral applicability of the software operation knowledge acquisition and presen-
tation tool, as well as the software operation knowledge integration template

178

Limitations and Future Research

dimensioning categorization naming

version n

version n +1

Figure 8.4 Two versions of the classification in table 3.3 illustrating dimensioning,
categorization and naming phases

method. Simultaneously, this provides opportunities for further refinement,
extension and specification of the artifacts presented in this dissertation.

The second limitation of this dissertation research is related to its explo-
rative nature. Although this dissertation forms an important and significant
step in (1) defining the concept of software operation knowledge and its life cy-
cle, (2) exposing the viability and feasibility of process improvement through
knowledge of in-the-field software operation and (3) demonstrating and eval-
uating such improvement empirically, we have only scratched the surface of
quantifying the value of software operation knowledge in terms of measurable
increases in inter alia process efficiency, employee productivity and software
vendor profitability. Further research, particularly development and empirical
evaluation of existing and new artifacts, is needed to mitigate this limitation.

An interesting future research avenue would be the establishment of situa-
tional factors [Bekkers et al. 2008] for SOK identification, acquisition, integra-
tion, presentation and utilization, to identify what are ingredients for mature

179

Chapter 8 — Conclusion

implementations of these SOK life cycle processes. Based on these situational
factors, a software operation knowledge maturity quick scan can then be de-
veloped, which allows for situational (1) measurement of a software vendor’s
maturity in terms of each of the software operation knowledge life cycle pro-
cesses and (2) identification of a vendor’s processes that can be improved the
most through integration of acquired software operation information.

8.4.2 Industrial Scope

Fromapractical perspective, the artifacts presented in this dissertation research
require careful implementations, and are subject to limitations. Concerning
the software operation knowledge framework, for example, the transforma-
tions between software operation data, operation information and operation
knowledge might be hard to distinguish in certain circumstances (e.g. when
a software vendor implementing the framework decides not to implement the
optional integration process, but directly visualize and present acquired soft-
ware operation data). Furthermore, the software operation knowledge inte-
gration template method may initially be found challenging to instantiate by
software vendors, since vendors may need to adopt the concept of a template
method, and because the method requires both operation information and tar-
get processes to be available before instantiating. Larger software vendors in
particularmight initially expectmore prescription from a process improvement
approach, and might need to accommodate to delegating template method in-
stantiation to smaller teams that are situated lower in the organization.

An interesting avenue for further research from a practical perspective is the
development of a generic, and thus situational, software operation knowledge
infrastructure that integrates all SOK life cycle processes. The infrastructure
should provide methodical and tool support for SOK identification, acquisi-
tion, integration, presentation and utilization, to allow software vendors to im-
plement the full SOK life cycle independently from their software and software
processes. As an example, the infrastructure could be composed of an extended
Nuntia tool that allows for on-the-fly instrumentation of software (i.e., during
in-the-field operation). Software feedback instrumentation could therewith be
automated, further eliminating the difference between software requiring de-
ployment and online, service-based software (e.g. web applications). Finally,
the infrastructure could support vendors in propagation of acquired operation
knowledge to software ecosystem partner organizations.

180

Bibliography

[Abran et al. 2004] Abran, A., Moore, J., Bourque, P., Dupuis, R., and Tripp, L.
(2004). Guide to the Software Engineering Body of Knowledge— SWEBOK.
(Cited on page 4)

[Van Angeren et al. 2011] Van Angeren, J., Kabbedijk, J., Jansen, S., and Popp,
K. M. (2011). A Survey of Associate Models used within Large Software
Ecosystems. In IWSECO ’11: Proceedings of the 3rd International Workshop on
Software Ecosystems, (pp. 1–13). (Cited on page 46)

[Barry et al. 2007] Barry, E. J., Kemerer, C. F., and Slaughter, S. A. (2007). How
software process automation affects software evolution: a longitudinal em-
pirical analysis. Journal of Software Maintenance and Evolution: Research and
Practice, 19, 1–31. (Cited on page 9)

[Baskerville and Pries-Heje 1999] Baskerville, R. L. and Pries-Heje, J. (1999).
Grounded action research: a method for understanding it in practice. Ac-
counting, Management and Information Technologies, 9(1), 1–23. (Cited on
page 15)

[Baskerville 1999] Baskerville, R. L. (1999). Investigating information systems
with action research. Communications of the AIS, 2. (Cited on page 15)

[Beecham et al. 2003] Beecham, S., Hall, T., and Rainer, A. (2003). Software
process improvement problems in twelve software companies: An empiri-
cal analysis. Empirical Software Engineering, 8, 7–42. (Cited on page 8)

[Bekkers et al. 2008] Bekkers, W., Van de Weerd, I., Brinkkemper, S., and
Mahieu, A. (2008). The Influence of Situational Factors in Software Prod-
uct Management: An Empirical Study. (pp. 41–48). IEEE Computer Society
Press. (Cited on page 179)

[Beynon-Davies 2010] Beynon-Davies, P. (2010). The enactment of significance:
a unified conception of information, systems and technology. European Jour-
nal of Information Systems, 19(4), 389–408. (Cited on page 12)

[Bleicher 1980] Bleicher, J. (1980). Contemporary Hermeneutics: Hermeneutics as
Method, Philosophy, and Critique. Routledge. (Cited on page 175)

181

Bibliography

[Von Bochmann et al. 2001] Von Bochmann, G., Kerhervé, B., Lutfiyya, H.,
Salem, M.-V. M., and Ye, H. (2001). Introducing QoS to Electronic Commerce
Applications. In ISEC ’01: Proceedings of the Second International Symposium
on Topics in Electronic Commerce, (pp. 138–147). Springer. (Cited on page 147)

[Bøegh 2008] Bøegh, J. (2008). ANewStandard forQuality Requirements. IEEE
Software, 25(2), 57–63. (Cited on page 27)

[Booch 2004] Booch, G. (2004). Object-Oriented Analysis and Design with Applica-
tions (3rd Edition). Addison-Wesley LongmanPublishing. (Cited onpage 144)

[Bosch and Bosch-Sijtsema 2010] Bosch, J. and Bosch-Sijtsema, P. (2010). From
integration to composition: On the impact of software product lines, global
development and ecosystems. Journal of Systems and Software, 83(1), 67–76.
(Cited on page 47)

[Bosch 2009] Bosch, J. (2009). From Software Product Lines to Software Ecosys-
tems. In SPLC ’09: Proceedings of the 13th International Conference on Software
Product Lines. Springer. (Cited on pages 46 and 51)

[Bowring et al. 2003] Bowring, J., Orso, A., and Harrold, M. J. (2003). Moni-
toring Deployed Software Using Software Tomography. SIGSOFT Software
Engineering Notes, 28(1), 2–9. (Cited on pages 24, 25, 31, 73, and 162)

[Brelsford et al. 2002] Brelsford, H., Toot, M., Kiri, K., and Van Steenburgh, R.
(2002). Connecting to Customers. (Cited on pages 24 and 144)

[Brown et al. 2002] Brown, J. S., Durchslag, S., and Hagel, J. (2002). Loosening
up: How process networks unlock the power of specialization. TheMcKinsey
Quarterly: Risk and Resilience, (2), 59–69. (Cited on page 48)

[Butler 1998] Butler, T. (1998). Towards a hermeneutic method for interpretive
research in information systems. Journal of Information Technology, 13(4), 285–
300. (Cited on page 176)

[CEIP] Microsoft Customer Experience Improvement Program.
http://www.microsoft.com/products/ceip/. (Cited on page 51)

[Clause and Orso 2007] Clause, J. and Orso, A. (2007). A Technique for
Enabling and Supporting Debugging of Field Failures. In ICSE ’07:
Proceedings of the 29th International Conference on Software Engineering, (pp.
261–270). IEEE Computer Society Press. (Cited on pages 31 and 73)

182

http://www.microsoft.com/products/ceip/

Bibliography

[Cole and Avison 2007] Cole, M. and Avison, D. (2007). The potential of
hermeneutics in information systems research. European Journal of
Information Systems, 16(6), 820–833. (Cited on pages 175, 176, and 177)

[Conradi and Fuggetta 2002] Conradi, R. and Fuggetta, A. (2002). Improving
Software Process Improvement. IEEE Software, 19(4), 92–99. (Cited on
pages 8 and 98)

[Cornelissen et al. 2008] Cornelissen, B., Zaidman, A., Holten, D., Moonen, L.,
Van Deursen, A., and Van Wijk, J. J. (2008). Execution trace analysis
through massive sequence and circular bundle views. Journal of Systems and
Software, 81(12), 2252–2268. (Cited on page 74)

[Dangle et al. 2005] Dangle, K. C., Larsen, P., Shaw, M., and Zelkowitz, M. V.
(2005). Software Process Improvement in Small Organizations: A Case
Study. IEEE Software, 22, 68–75. (Cited on page 99)

[Darke et al. 1998] Darke, P., Shanks, G. G., and Broadbent, M. (1998).
Successfully completing case study research: combining rigour, relevance
and pragmatism. Information Systems Journal, 8(4), 273–290. (Cited on
page 15)

[Davis et al. 1988] Davis, A. M., Bersoff, H., and Comer, E. R. (1988). A
Strategy for Comparing Alternative Software Development Life Cycle
Models. IEEE Transactions on Software Engineering, 14(10), 1453–1461. (Cited
on page 7)

[Davison et al. 2004] Davison, R. M., Martinsons, M. G., and Kock, N. (2004).
Principles of canonical action research. Information Systems Journal, 14,
65–86. (Cited on pages 15, 100, 101, and 114)

[Dawes] Dawes, J. Do Data Characteristics Change According to the number
of scale points used? An experiment using 5-point, 7-point and 10-point
scales. International Journal of Market Research, 50(1), 61–77. (Cited on
page 150)

[Denning 1997] Denning, P. J. (1997). A New Social Contract for Research.
Communications of the ACM, 40, 132–134. (Cited on page 12)

[Dorling 1993] Dorling, A. (1993). SPICE: Software process improvement and
capability dEtermination. Software Quality Journal, 2, 209–224. (Cited on
page 8)

183

Bibliography

[Dul and Hak 2008] Dul, J. and Hak, T. (2008). Case Study Methodology in
Business Research. Butterworth-Heinemann. (Cited on page 15)

[Easterbrook et al. 2008] Easterbrook, S., Singer, J., Storey, M.-A., and Damian,
D., Selecting Empirical Methods for Software Engineering Research, In
Shull, F., Singer, J., and Sjøberg, D. I. K. (Eds.), Guide to Advanced Empirical
Software Engineering, (pp. 285–311). (Cited on pages 73 and 82)

[Ebert and Dumke 2007] Ebert, C. and Dumke, R. (2007). Software
Measurement. Springer. (Cited on pages 9, 10, and 25)

[Eisenhardt 1989] Eisenhardt, K. M. (1989). Building Theories from Case
Study Research. The Academy of Management Review, 14(4), 532–550. (Cited
on page 15)

[Falconer and Mackay 1999] Falconer, D. J. and Mackay, D. R. (1999). The Key
to the Mixed Method Dilemma. In ACIS ’99: Proceedings of the 10th
Australasian Conference on Information Systems, (pp. 286–297). School of
Communications and Information Management. (Cited on page 173)

[Farbey and Finkelstein 1999] Farbey, B. and Finkelstein, A. (1999). Exploiting
software supply chain business architecture: a research agenda. In
EDSER ’99: 1st Workshop on Economics-Driven Software Engineering Research.
IEEE Computer Society Press. (Cited on pages 46 and 51)

[Farrell and Kreger 2002] Farrell, J. and Kreger, H. (2002). Web services
management approaches. IBM Systems Journal, 41(2). (Cited on pages 144,
147, and 152)

[Filman et al. 2005] Filman, R. E., Elrad, T., Clarke, S., and AKŞIT, M. (2005).
Aspect-Oriented Software Development. Addison-Wesley. (Cited on page 157)

[Fitzgerald and O’Kane 1999] Fitzgerald, B. and O’Kane, T. (1999). A
Longitudinal Study of Software Process Improvement. IEEE Software, 16(3),
37–45. (Cited on pages 8 and 99)

[Fraiteur 2008] Fraiteur, G. (2008). User-friendly aspects with compile-time
imperative semantics in .NET. Presented at the 7th International
Conference on Aspect-Oriented Software Development (AOSD 2008).
(Cited on page 157)

[Fritz and Murphy 2010] Fritz, T. and Murphy, G. C. (2010). Using
Information Fragments to Answer the Questions Developers Ask. In

184

Bibliography

ICSE ’10: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering — Volume 1, (pp. 175–184). ACM Press. (Cited on
page 139)

[Gable 1994] Gable, G. G. (1994). Integrating Case Study and Survey Research
Methods: An Example in Information Systems. European Journal of
Information Systems, 3(2), 112–126. (Cited on page 173)

[Gawer and Cusumano 2002] Gawer, A. G. and Cusumano, M. A. (2002).
Platform Leadership. Harvard Business School Press. (Cited on page 48)

[Glerum et al. 2009] Glerum, K., Kinshumann, K., Greenberg, S., Aul, G.,
Orgovan, V., Nichols, G., Grant, D., Loihle, G., and Hunt, G. C. (2009).
Debugging in the (Very) Large: Ten Years of Implementation and
Experience. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, (pp. 103–116). ACM Press. (Cited on
pages 51, 72, 98, and 120)

[Google Breakpad 2010] (2010). google-breakpad – Crash reporting.
http://code.google.com/p/google-breakpad/. (Cited on pages 120, 126,
and 128)

[Gray 1986] Gray, J. (1986). Why Do Computers Stop and What Can Be Done
About It? In SRDS ’86: Proceedings of the 5th Symposium on Reliability in
Distributed Software and Database Systems, (pp. 3–12). IEEE Computer Society
Press. (Cited on pages 58 and 60)

[GWO] Google Website Optimizer.
http://www.google.com/websiteoptimizer/. (Cited on page 24)

[Gyimóthy et al. 2005] Gyimóthy, T., Ferenc, R., and Siket, I. (2005). Empirical
Validation of Object-Oriented Metrics on Open Source Software for Fault
Prediction. IEEE Transactions on Software Engineering, 31(10), 897–910.
(Cited on page 27)

[Häcki and Lighton 2001] Häcki, R. and Lighton, J. (2001). The future of the
networked company. The McKinsey Quarterly, (3), 26–39. (Cited on
pages 47, 48, 50, and 51)

[Hall et al. 2002] Hall, T., Rainer, A., and Baddoo, N. (2002). Implementing
software process improvement: An empirical study. Software Process:
Improvement and Practice, 7(1), 3–15. (Cited on page 8)

185

http://code.google.com/p/google-breakpad/
http://www.google.com/websiteoptimizer/

Bibliography

[Hays 2003] Hays, P. A., Case study research, In DeMarrais, K. B. and Lapan,
S. D. (Eds.), Foundations for Research: Methods of Inquiry in Education and the
Social Sciences. (Cited on page 15)

[Heidegger 1927] Heidegger, M. (1927). Sein und Zeit (Being and Time). Max
Niemeyer Verlag. (Cited on pages 176 and 177)

[Hevner et al. 2004] Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
Design Science in Information Systems Research. MIS Quarterly, 28(1),
75–105. (Cited on pages 12, 13, 14, 16, 73, 100, and 177)

[Hilbert and Redmiles 2000] Hilbert, D. M. and Redmiles, D. F. (2000).
Extracting Usability Information from User Interface Events. ACM
Computing Surveys, 32. (Cited on page 9)

[Iansiti and Levien 2004a] Iansiti, M. and Levien, R. (2004). Strategy as
Ecology. Harvard Business Review, 82, 68–78. (Cited on page 48)

[Iansiti and Levien 2004b] Iansiti, M. and Levien, R. (2004). The Keystone
Advantage: What the New Dynamics of Business Ecosystems Mean for Strategy,
Innovation, and Sustainability. Harvard Business School Press. (Cited on
page 48)

[Ibrahim et al. 2007] Ibrahim, M. H., Holley, K., Josuttis, N. M., Michelson, B.,
Thomas, D. A., and DeVadoss, J. (2007). The future of soa: what worked,
what didn’t, and where is it going from here? In OOPSLA ’07: Proceedings
of the 22nd ACM SIGPLAN conference on Object-Oriented Programming
Systems and Applications, (pp. 1034–1038). ACM Press. (Cited on page 144)

[ISO/IEC 2001] (2001). ISO/IEC 9126-1:2001: Software engineering – Product
quality – Part 1: Quality model. International Organization for
Standardization. (Cited on page 27)

[ISO/IEC 2006] (2006). ISO/IEC 14764:2006: Software Engineering —
Software Life Cycle Processes — Maintenance. (Cited on pages 118, 119,
120, and 123)

[ISO/IEC 2008] (2008). ISO/IEC 12207:2008: Systems and software
engineering — Software life cycle processes. International Organization for
Standardization. (Cited on page 7)

[Iversen et al. 2004] Iversen, J. H., Mathiassen, L., and Nielsen, P. A. (2004).
Managing Risk in Software Process Improvement: An Action Research
Approach. MIS Quarterly, 28(3). (Cited on page 99)

186

Bibliography

[Jansen et al. 2009] Jansen, S., Brinkkemper, S., and Finkelstein, A. (2009). A
Sense of Community: A Research Agenda for Software Ecosystems. In
ICSE’09: Proceedings of the 31st International Conference on Software
Engineering. IEEE Computer Society Press. (Cited on pages 30, 47, and 51)

[Jansen et al. 2008] Jansen, S., Brinkkemper, S., and Helms, R. (2008).
Benchmarking the Customer Configuration Updating Practices of Product
Software Vendors. In ICCBSS ’08: Proceedings of the Seventh International
Conference on Composition-Based Software Systems, (pp. 82–91). IEEE
Computer Society Press. (Cited on pages 3, 72, and 144)

[Jansen and Brinkkemper 2008] Jansen, S. and Brinkkemper, S., Applied
Multi-Case Research in a Mixed-Method Research Project: Customer
Configuration Updating Improvement, In Cater-steel, A. and Al-Hakim, L.
(Eds.), Information Systems Research Methods, Epistemology, and Applications,
(pp. 422). (Cited on pages 15, 16, and 173)

[Jansen et al. 2010] Jansen, S., Buts, W., Brinkkemper, S., and Van der Hoek, A.
(2010). Benchmarking the Customer Configuration Updating Process of the
International Product Software Industry. In ICSP ’10: Proceedings of the 2010
International Conference on Software Process, (pp. 369–380). Springer. (Cited
on page 3)

[Jansen et al. 2009] Jansen, S., Finkelstein, A., and Brinkkemper, S. (2009).
Business Network Management as a Survival Strategy: A Tale of Two
Software Ecosystems. In IWSECO ’09: Proceedings of the First International
Workshop on Software Ecosystems, (pp. 34–48). Springer. (Cited on pages 47
and 48)

[Jansen 2007] Jansen, S. (2007). Customer Configuration Updating in a Software
Supply Network. PhD thesis, Universiteit Utrecht. (Cited on pages 6, 7,
and 171)

[Johnson et al. 2007] Johnson, M. J., Ho, C.-W., Maximilien, E. M., and
Williams, L. (2007). Incorporating Performance Testing in Test-Driven
Development. IEEE Software, 24(3), 67–73. (Cited on page 26)

[Jones et al. 2004] Jones, J. A., Orso, A., and Harrold, M. J. (2004).
GAMMATELLA: visualizing program-execution data for deployed
software. Information Visualization, 3(3), 173–188. (Cited on page 74)

187

Bibliography

[Kaiser et al. 1988] Kaiser, G. E., Feiler, P. H., and Popovich, S. S. (1988).
Intelligent Assistance for Software Development and Maintenance. IEEE
Software, 5, 40–49. (Cited on page 9)

[Kalepu et al. 2003] Kalepu, S., Krishnaswamy, S., and Loke, S. W. (2003).
Verity: a QoS metric for selecting Web services and providers. In
WISEW ’03: Proceedings of the 4th International Conference on Web Information
Systems Engineering Workshops, (pp. 131–139). IEEE Computer Society Press.
(Cited on page 146)

[Kallepalli and Tian 2001] Kallepalli, C. and Tian, J. (2001). Measuring and
Modeling Usage and Reliability for Statistical Web Testing. 27(11),
1023–1036. (Cited on pages 9 and 28)

[Kettinger and Li 2010] Kettinger, W. J. and Li, Y. (2010). The infological
equation extended: towards conceptual clarity in the relationship between
data, information and knowledge. European Journal of Information Systems,
19(4), 409–421. (Cited on page 9)

[Kim et al. 2011] Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S., and Park,
S. (2011). Which Crashes Should I Fix First?: Predicting Top Crashes at an
Early Stage to Prioritize Debugging Efforts. IEEE Transactions on Software
Engineering. (Cited on page 139)

[Kitchenham et al. 2008] Kitchenham, B., Al-Khilidar, H., Babar, M., Berry, M.,
Cox, K., Keung, J., Kurniawati, F., Staples, M., Zhang, H., and Zhu, L. (2008).
Evaluating guidelines for reporting empirical software engineering studies.
Empirical Software Engineering, 13, 97–121. (Cited on pages 73 and 82)

[Kitchenham and Pfleeger 2002] Kitchenham, B. A. and Pfleeger, S. L. (2002).
Principles of Survey Research Part 3: Constructing a Survey Instrument.
SIGSOFT Software Engineering Notes, 27, 20–24. (Cited on pages 121 and 138)

[Kittlaus and Clough 2009] Kittlaus, H.-B. and Clough, P. N. (2009). Software
Product Management and Pricing: Key Success Factors for Software
Organizations. Springer. (Cited on page 47)

[Klein and Myers 1999] Klein, H. K. and Myers, M. D. (1999). A set of
principles for conducting and evaluating interpretive field studies in
information systems. MIS Quarterly, 23, 67–93. (Cited on pages 16 and 65)

[Kristjánsson and Van der Schuur 2009] Kristjánsson, B. and Van der Schuur,
H. (2009). A Survey of Tools for Software Operation Knowledge

188

Bibliography

Acquisition. Technical Report UU-CS-2009-028, Department of Information
and Computing Sciences, Utrecht University. (Cited on page 73)

[Kuilboer and Ashrafi 2000] Kuilboer, J. P. and Ashrafi, N. (2000). Software
process and product improvement: an empirical assessment. Information
and Software Technology, 42(1), 27–34. (Cited on pages 8, 98, and 172)

[Lee and Baskerville 2003] Lee, A. S. and Baskerville, R. L. (2003).
Generalizing Generalizability in Information Systems Research. Information
Systems Research, 14, 221–243. (Cited on page 177)

[Lehman and Ramil 1999] Lehman, M. M. and Ramil, J. F. (1999). The impact
of feedback in the global software process. Journal of Systems and Software,
46, 123–134. (Cited on pages 9 and 25)

[Lehman 1996] Lehman, M. M. (1996). Feedback, Evolution and Software
Technology. In ISPW ’96: Proceedings of the 10th International Software Process
Workshop, (pp. 101–103). IEEE Computer Society Press. (Cited on page 9)

[Lehtola and Kauppinen 2006] Lehtola, L. and Kauppinen, M. (2006).
Suitability of Requirements Prioritization Methods for Market-driven
Software Product Development. Softw. Process: Improvement and Practice,
11(1), 7–19. (Cited on page 118)

[Lewis 2001] Lewis, L. (2001). Managing Business and Service Networks. Kluwer
Academic Publishers. (Cited on page 149)

[Lippoldt and Stryszowski 2009] Lippoldt, D. and Stryszowski, P. (2009).
Innovation in the Software Sector. OECD Publishing. (Cited on pages 3 and 5)

[Liu and Xu 2007] Liu, D. and Xu, S. (2007). New Quality Metrics for
Object-Oriented Programs. In SNPD ’07: Proceedings of the 8th ACIS
International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing — Volume 03, (pp. 870–875).
IEEE Computer Society Press. (Cited on page 9)

[Mac OS X Reference Library 2010] (2010). Mac OS X Reference Library –
TN2123: CrashReporter. http://developer.apple.com/library/
mac/#technotes/tn2004/tn2123.html. (Cited on pages 120, 126, and 128)

[Madhavji et al. 2006] Madhavji, N. H., Fernandez-Ramil, J., and Perry, D.
(2006). Software Evolution and Feedback: Theory and Practice. John
Wiley & Sons. (Cited on pages 9, 10, 25, and 72)

189

http://developer.apple.com/library/
mac/#technotes/tn2004/tn2123.html

Bibliography

[Van Manen 1997] Van Manen, M. (1997). From Meaning to Method.
Qualitative Health Research, 7(3), 345–369. (Cited on page 175)

[Mani and Nagarajan 2002] Mani, A. and Nagarajan, A. (2002).
Understanding quality of service for Web services.
http://www.ibm.com/developerworks/java/library/ws-quality.html.
(Cited on pages 26 and 147)

[March and Smith 1995] March, S. T. and Smith, G. F. (1995). Design and
natural science research on information technology. Decision Support
Systems, 15, 251–266. (Cited on page 12)

[Mathews 1987] Mathews, M. L., Hypercube software performance metrics,
In Hypercube Multiprocessors 1987, (pp. 155–161). (Cited on page 9)

[Maturana 1980] Maturana, H., Man and society, In Benseler, F., Hejl, P., and
Koch, W. (Eds.), Autopoiesis, Communication, and Society: The Theory of
Autropoietic Systems in the Social Sciences, (pp. 11–31). (Cited on page 175)

[Memon et al. 2004] Memon, A., Porter, A., Yilmaz, C., Nagarajan, A.,
Schmidt, D., and Natarajan, B. (2004). Skoll: Distributed Continuous
Quality Assurance. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, (pp. 459–468). IEEE Computer Society
Press. (Cited on page 24)

[Menascé et al. 2001] Menascé, D. A., Barbará, D., and Dodge, R. (2001).
Preserving QoS of E-commerce Sites Through Self-Tuning: A Performance
Model Approach. In EC ’01: Proceedings of the 3rd ACM conference on
Electronic Commerce, (pp. 224–234)., New York, NY, USA. ACM Press. (Cited
on pages 144 and 147)

[Mendelson and Ziegler 1999] Mendelson, H. and Ziegler, J. (1999). Survival
of the Smartest: Managing Information for Rapid Action and World-Class
Performance. John Wiley & Sons. (Cited on page 145)

[Messerschmitt and Szyperski 2003] Messerschmitt, D. G. and Szyperski, C.
(2003). Software Ecosystem: Understanding an Indispensable Technology and
Industry. MIT Press. (Cited on page 47)

[Microsoft Error Reporting 2006] (2006). How to: Configure Microsoft Error
Reporting. http://msdn.microsoft.com/en-us/library/
bb219076(v=office.12).aspx. (Cited on pages 120, 126, and 128)

190

http://www.ibm.com/developerworks/java/library/ws-quality.html
http://msdn.microsoft.com/en-us/library/
bb219076(v=office.12).aspx

Bibliography

[Microsoft .NET Framework] .NET Framework Developer Center.
http://msdn.microsoft.com/netframework/. (Cited on pages 77, 81,
and 82)

[Microsoft Online Crash Analysis 2005] (2005). Microsoft Online Crash
Analysis – Error Report Contents Information.
http://oca.microsoft.com/en/dcp20.asp. (Cited on pages 120, 126,
and 128)

[Miler and Górski 2004] Miler, J. and Górski, J. (2004). Risk-driven Software
Process Improvement — a Case Study. In EuroSPI’04: Proceedings of the 11th
European Conference on Software Process Improvement. Springer. (Cited on
page 99)

[MLTP] Mozilla Labs Test Pilot. http://labs.mozilla.com/testpilot/.
(Cited on page 24)

[Mockus et al. 2005] Mockus, A., Zhang, P., and Li, P. L. (2005). Predictors of
Customer Perceived Software Quality. In ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering, (pp. 225–233). ACM Press.
(Cited on page 9)

[Mono Project] The Mono Project. http://mono-project.com/. (Cited on
page 77)

[Morgan 1996] Morgan, D. L. (1996). Focus groups. Annual Review of
Sociology, 22, 129–152. (Cited on page 16)

[Murphy 2004] Murphy, B. (2004). Automating Software Failure Reporting.
Queue, 2, 42–48. (Cited on page 9)

[Musa 1993] Musa, J. D. (1993). Operational profiles in software-reliability
engineering. IEEE Software, 10, 14–32. (Cited on page 9)

[Nachmanson et al. 2008] Nachmanson, L., Robertson, G., and Lee, B. (2008).
Drawing Graphs with GLEE. Graph Drawing, 389–394. (Cited on page 81)

[Nagappan et al. 2006] Nagappan, N., Ball, T., and Zeller, A. (2006). Mining
metrics to predict component failures. In ICSE ’06: Proceedings of the 28th
International Conference on Software Engineering, (pp. 452–461). ACM Press.
(Cited on page 9)

[Nagappan et al. 2010] Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K.,
and Murphy, B. (2010). Change Bursts as Defect Predictors. In ISSRE ’10:

191

http://msdn.microsoft.com/netframework/
http://oca.microsoft.com/en/dcp20.asp
http://labs.mozilla.com/testpilot/
http://mono-project.com/

Bibliography

Proceedings of the 21st IEEE International Symposium on Software Reliability
Engineering. IEEE Computer Society Press. (Cited on page 9)

[Nap 2011] Nap, C. (2011). Universiteit onderzoekt prioriteren onopgeloste
bugs (University researches prioritization of unsolved bugs). Automatisering
Gids. http://www.automatiseringgids.nl/technologie/software/2011/4/
onderzoek-naar-softwareonderhoud.aspx. (Cited on page 127)

[Narayanasamy et al. 2005] Narayanasamy, S., Pokam, G., and Calder, B.
(2005). BugNet: Continuously Recording Program Execution for
Deterministic Replay Debugging. In ISCA ’05: Proceedings of the 32nd
International Symposium on Computer Architecture, (pp. 284–295). IEEE
Computer Society Press. (Cited on page 73)

[Naumann et al. 1999] Naumann, F., Leser, U., and Freytag, J. C. (1999).
Quality-driven Integration of Heterogenous Information Systems. In
VLDB ’99: Proceedings of the 25th International Conference on Very Large Data
Bases, (pp. 447–458). Morgan Kaufmann Publishers Inc. (Cited on pages 147
and 148)

[Newcomer and Lomow 2004] Newcomer, E. and Lomow, G. (2004).
Understanding SOA with Web Services (Independent Technology Guides).
Addison-Wesley. (Cited on page 144)

[Nielsen 1993] Nielsen, J. (1993). Usability Engineering. Academic Press.
(Cited on page 148)

[Nuntia 2011] (2011). Nuntia — A Tool for Generic Binary Instrumentation.
http://nuntia.nl/. (Cited on page 18)

[Nusayr and Cook 2009] Nusayr, A. and Cook, J. (2009). AOP for the Domain
of Runtime Monitoring: Breaking Out of the Code-Based Model. In
DSAL ’09: Proceedings of the 4th workshop on Domain-specific aspect languages,
(pp. 7–10). ACM Press. (Cited on pages 73 and 75)

[OECD 2010] (2010). OECD Information Technology Outlook 2010. OECD
Publishing. (Cited on pages 3 and 5)

[OOPEC 2005] (2005). The new SME definition — User guide and model
declaration. Enterprise and Industry Publications. Office for Official
Publications of the European Communities. (Cited on page 127)

192

http://www.automatiseringgids.nl/technologie/software/2011/4/onderzoek-naar-softwareonderhoud.aspx
http://www.automatiseringgids.nl/technologie/software/2011/4/onderzoek-naar-softwareonderhoud.aspx
http://nuntia.nl/

Bibliography

[Orso et al. 2002] Orso, A., Liang, D., Harrold, M. J., and Lipton, R. (2002).
Gamma System: Continuous Evolution of Software after Deployment. In
ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis, (pp. 65–69). ACM Press. (Cited on pages 24
and 31)

[Paint.NET Roadmap and Change Log] Paint.NET Roadmap and Change
Log. http://www.getpaint.net/roadmap.html. (Cited on page 84)

[Papapetrou and Papadopoulos 2004] Papapetrou, O. and Papadopoulos,
G. A. (2004). Aspect oriented programming for a component-based real life
application: a case study. In SAC ’04: Proceedings of the 2004 ACM
symposium on Applied computing, (pp. 1554–1558). ACM Press. (Cited on
pages 153 and 157)

[Pettersson et al. 2008] Pettersson, F., Ivarsson, M., Gorschek, T., and Öhman,
P. (2008). A practitioner’s guide to light weight software process
assessment and improvement planning. Journal of Systems and Software,
81(6), 972–995. (Cited on pages 98 and 99)

[Pfleeger and Atlee 2009] Pfleeger, S. and Atlee, J. (2009). Software Engineering:
Theory and Practice. Prentice Hall. (Cited on page 4)

[Pfleeger and Kitchenham 2001] Pfleeger, S. L. and Kitchenham, B. A. (2001).
Principles of survey research — part 1: Turning lemons into lemonade.
SIGSOFT Software Engineering Notes, 26, 16–18. (Cited on page 16)

[Pigoski 1997] Pigoski, T. M. (1997). Practical Software Maintenance: Best
Practices for Managing Your Software Investment. John Wiley & Sons. (Cited
on pages 119 and 120)

[Porter 1993] Porter, A. A. (1993). Using measurement-driven modeling to
provide empirical feedback to software developers. Journal of Systems and
Software, 20(3), 237–243. (Cited on page 9)

[Pressman 2010] Pressman, R. (2010). Software Engineering: A Practitioner’s
Approach. McGraw-Hill Higher Education. (Cited on page 4)

[Putrycz et al. 2005] Putrycz, E., Woodside, M., and Wu, X. (2005).
Performance Techniques for COTS Systems. IEEE Software, 22(4), 36–44.
(Cited on pages 9 and 26)

[Ran 2003] Ran, S. (2003). A Model for Web Services Discovery With QoS.
ACM SIGecom Exchanges, 4(1), 1–10. (Cited on page 147)

193

http://www.getpaint.net/roadmap.html

Bibliography

[Rompaey et al. 2009] Rompaey, B. V., Bois, B. D., Demeyer, S., Pleunis, J.,
Putman, R., Meijfroidt, K., Dueñas, J. C., and García, B. (2009). SERIOUS:
Software Evolution, Refactoring, Improvement of Operational and Usable
Systems. In CSMR ’09: Proceedings of the European Conference on Software
Maintenance and Reengineering, (pp. 277–280). IEEE Computer Society Press.
(Cited on page 25)

[Rout et al. 2007] Rout, T. P., El Emam, K., Fusani, M., Goldenson, D., and
Jung, H.-W. (2007). SPICE in retrospect: Developing a standard for process
assessment. Journal of Systems and Software, 80, 1483–1493. (Cited on page 8)

[Sahai et al. 2001] Sahai, A., Ouyang, J., Machiraju, V., and Wurster, K. (2001).
HP Laboratories — Specifying and Guaranteeing Quality of Service for
Web Services through Real Time Measurement and Adaptive Control.
http://www.hpl.hp.com/techreports/2001/HPL-2001-134.html. (Cited on
page 147)

[Sandelowski 2000] Sandelowski, M. (2000). Combining Qualitative and
Quantitative Sampling, Data Collection, and Analysis Techniques in
Mixed-Method Studies. Research in Nursing & Health, 23(3), 246–255. (Cited
on pages 16 and 173)

[Van der Schuur et al. 2008] Van der Schuur, H., Jansen, S., and Brinkkemper,
S. (2008). Becoming Responsive to Service Usage and Performance Changes
by Applying Service Feedback Metrics to Software Maintenance. In
Evol ’08: Proceedings of the 4th International ECRIM Workshop on Software
Evolution and Evolvability, (pp. 53–62). IEEE Computer Society Press. (Cited
on pages 19, 25, 31, 48, 75, and 143)

[Van der Schuur et al. 2010] Van der Schuur, H., Jansen, S., and Brinkkemper,
S. (2010). A Reference Framework for Utilization of Software Operation
Knowledge. In SEAA ’10: Proceedings of the 36th EUROMICRO Conference on
Software Engineering and Advanced Applications, (pp. 245–254). IEEE
Computer Society Press. (Cited on pages 18, 23, 46, 48, 72, 74, 98, 102, 107,
and 123)

[Van der Schuur et al. 2011a] Van der Schuur, H., Jansen, S., and Brinkkemper,
S. (2011). If the SOK Fits, Wear It: Pragmatic Process Improvement through
Software Operation Knowledge. In PROFES ’11: Proceedings of the 12th
International Conference on Product Focused Software Development and Process
Improvement, (pp. 306–321). Springer. (Cited on pages 19, 97, 121, and 141)

194

http://www.hpl.hp.com/techreports/2001/HPL-2001-134.html

Bibliography

[Van der Schuur et al. 2011b] Van der Schuur, H., Jansen, S., and Brinkkemper,
S. (2011). Reducing Maintenance Effort through Software Operation
Knowledge: An Eclectic Empirical Evaluation. In CSMR ’11: Proceedings of
the 15th European Conference on Software Maintenance and Reengineering, (pp.
201–210). IEEE Computer Society Press. (Cited on pages 18, 48, 71, 98, 102,
and 119)

[Van der Schuur et al. 2011c] Van der Schuur, H., Jansen, S., and Brinkkemper,
S. (2011). Sending Out a Software Operation Summary: Leveraging
Software Operation Knowledge for Prioritization of Maintenance Tasks. In
MENSURA ’11: Proceedings of the 6th International Conference on Software
Process and Product Measurement. IEEE Computer Society Press. (Cited on
pages 3, 19, 118, 119, and 120)

[Van der Schuur et al. 2011d] Van der Schuur, H., Jansen, S., and
Brinkkemper, S. (2011). The Power of Propagation: On the Role of Software
Operation Knowledge within Software Ecosystems. In MEDES ’11:
Proceedings of the International Conference on Management of Emergent Digital
EcoSystems. ACM Press. (Cited on pages 18 and 45)

[Seffah et al. 2006] Seffah, A., Donyaee, M., Kline, R. B., and Padda, H. K.
(2006). Usability measurement and metrics: A consolidated model.
Software Quality Journal, 14(2), 159–178. (Cited on page 148)

[SEI 2010] SEI (2010). CMMI® for Development — SCAMPI Class A
Appraisal Results — 2010 End-Year Update. Software Engineering
Institute. (Cited on page 8)

[Selby et al. 1991] Selby, R. W., Porter, A. A., Schmidt, D. C., and Berney, J.
(1991). Metric-driven analysis and feedback systems for enabling
empirically guided software development. In ICSE ’91: Proceedings of the
13th International Conference on Software Engineering, (pp. 288–298). IEEE
Computer Society Press. (Cited on pages 9 and 25)

[Shackel 1991] Shackel, B., Usability — context, framework, definition, design
and evaluation, In Human factors for informatics usability, (pp. 21–37). (Cited
on page 148)

[Silver et al. 1995] Silver, M. S., Markus, M. L., and Beath, C. M. (1995). The
Information Technology Interaction Model: A Foundation for the MBA
Core Course. MIS Quarterly, 19, 361–390. (Cited on page 12)

195

Bibliography

[Simmons 2006] Simmons, E. (2006). The Usage Model: Describing Product
Usage during Design and Development. IEEE Software, 23(3), 34–41. (Cited
on page 28)

[Smite and Gencel 2009] Smite, D. and Gencel, C., Why a CMMI Level 5
Company Fails to Meet the Deadlines?, In Product-Focused Software Process
Improvement, volume 32 of Lecture Notes in Business Information Processing,
(pp. 87–95). (Cited on pages 8, 98, and 172)

[Sommerville 2007] Sommerville, I. (2007). Software Engineering. International
Computer Science. Addison-Wesley. (Cited on page 4)

[Stake 1995] Stake, R. E. (1995). The Art of Case Study Research. Sage. (Cited on
page 15)

[Staples et al. 2007] Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P.,
and Murphy, R. (2007). An exploratory study of why organizations do not
adopt CMMI. Journal of Systems and Software, 80(6), 883–895. (Cited on
pages 8 and 172)

[Stavely 1978] Stavely, A. M. (1978). Design feedback and its use in software
design aid systems. SIGSOFT Software Engineering Notes, 3, 72–78. (Cited on
page 8)

[Van Steenbergen et al. 2010] Van Steenbergen, M., Bos, R., Brinkkemper, S.,
Van de Weerd, I., and Bekkers, W. (2010). The Design of Focus Area
Maturity Models. In DESRIST ’10: Proceedings of the 5th International
Conference on Design Science Research in Information Systems and Technology,
(pp. 317–332). Springer. (Cited on pages 4 and 8)

[Susman and Evered 1978] Susman, G. I. and Evered, R. D. (1978). An
Assessment of the Scientific Merits of Action Research. Administrative
Science Quarterly, 23(4), 582–603. (Cited on page 101)

[Tautz and Althoff 1997] Tautz, C. and Althoff, K.-D. (1997). Using
Case-Based Reasoning for Reusing Software Knowledge. Case-Based
Reasoning Research and Development, 156–165. (Cited on page 25)

[The PostSharp Platform] The PostSharp Platform.
http://www.postsharp.org/. (Cited on page 79)

[Tsichritzis 1998] Tsichritzis, D., The Dynamics of Innovation, In Beyond
Calculation: The Next Fifty Years of Computing, (pp. 259–265). (Cited on
page 12)

196

http://www.postsharp.org/

Bibliography

[Ubuntu Wiki 2010] (2010). Ubuntu Wiki – Apport.
https://wiki.ubuntu.com/Apport/. (Cited on pages 120, 126, and 128)

[Vaishnavi and Kuechler 2009] Vaishnavi, V. and Kuechler, W. (2009). Design
Research in Information Systems.
http://desrist.org/design-research-in-information-systems/. (Cited
on page 5)

[Verma 1999] Verma, D. (1999). Supporting Service Level Agreements on IP
Networks. Macmillan Technical Publishing. (Cited on page 149)

[VS2008] Microsoft — .NET Framework Programming in Visual Studio.
http://msdn.microsoft.com/en-us/library/k1s94fta.aspx. (Cited on
page 157)

[Van de Weerd 2009] Van de Weerd, G. (2009). Advancing in Software Product
Management: An Incremental Method Engineering Approach. PhD thesis,
Utrecht University. (Cited on page 4)

[Van de Weerd et al. 2010] Van de Weerd, I., Bekkers, W., and Brinkkemper, S.
(2010). Developing a Maturity Matrix for Software Product Management.
In ICSOB ’10: Proceedings of the 1st International Conference on Software
Business, (pp. 76–89). (Cited on page 4)

[Van de Weerd et al. 2006] Van de Weerd, I., Brinkkemper, S., Nieuwenhuis,
R., Versendaal, J., and Bijlsma, L. (2006). Towards a Reference Framework
for Software Product Management. In RE ’06: Proceedings of the 14th IEEE
International Requirements Engineering Conference, (pp. 319–322). IEEE
Computer Society Press. (Cited on page 4)

[Van de Weerd and Brinkkemper 2008] Van de Weerd, I. and Brinkkemper, S.,
Meta-Modeling for Situational Analysis and Design Methods, In Syed,
M. R. and Syed, S. N. (Eds.), Handbook of Research on Modern Systems Analysis
and Design Technologies and Applications, (pp. 38–58). (Cited on pages 102,
103, and 121)

[Wiegner and Nof 1993] Wiegner, R. and Nof, S. (1993). The software product
feedback flow model for development planning. Information and Software
Technology, 35(8), 427–438. (Cited on page 9)

[WinQual] Windows Quality Online Services.
https://winqual.microsoft.com/. (Cited on page 51)

197

https://wiki.ubuntu.com/Apport/
http://desrist.org/design-research-in-information-systems/
http://msdn.microsoft.com/en-us/library/k1s94fta.aspx
https://winqual.microsoft.com/

Bibliography

[Xu and Brinkkemper 2007] Xu, L. and Brinkkemper, S. (2007). Concepts of
Product Software. European Journal of Information Systems, 16, 531–541.
(Cited on pages 4, 5, 6, 7, 33, and 171)

[Yin 2009] Yin, R. K. (2009). Case Study Research: Design and Methods (Applied
Social Research Methods) (Fourth Edition. ed.). Sage Publications. (Cited on
pages 15, 34, 43, 136, and 153)

[Yu and Lin 2005] Yu, T. and Lin, K.-J. (2005). Service selection algorithms for
Web services with end-to-end QoS constraints. Inf. Systems and E-Business
Management, 3, 103–126. (Cited on pages 27, 144, 147, and 152)

[Zeng et al. 2003] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., and
Sheng, Q. Z. (2003). Quality Driven Web Services Composition. In
WWW ’03: Proceedings of the 12th International Conference on World Wide Web,
(pp. 411–421). ACM Press. (Cited on pages 27, 147, and 148)

[Zimmermann et al. 2008] Zimmermann, T., Nagappan, N., and Zeller, A.,
Predicting Bugs from History, In Mens, T. and Demeyer, S. (Eds.), Software
Evolution, (pp. 69–88). (Cited on page 9)

[Zimmermann et al. 2010] Zimmermann, T., Premraj, R., Bettenburg, N., Just,
S., Schröter, A., and Weiss, C. (2010). What Makes a Good Bug Report?
IEEE Transactions on Software Engineering, 36(5), 618–643. (Cited on
page 139)

198

A
Software Operation Knowledge

Survey Questions

CONTEXTUAL INFORMATION

1. Please describe your function within the organization you’re employed
in.

2. Please give an indication of the size of the organization you’re employed
in.

3. Please characterize the organization you’re employed in (type of prod-
ucts, services, branch, etc.).

4. Please indicate for how long your organization’s main software product
(or service) is available on the market now.

5. How many major releases have been released since the first commercial
version of your organization’s main software product (or service)?

IDENTIF ICATION AND DEFINIT ION

6. Please indicate if you consider knowledge about performance of software
in the field (e.g. latency, throughput, response times) as a part of the
concept of ‘Software Operation Knowledge’.

199

Appendix A — Software Operation Knowledge Survey Questions

7. Please indicate if you consider knowledge about quality of software in the
field (e.g. #exceptions, effectiveness, productivity, reliability, availability)
as a part of the concept of ‘Software Operation Knowledge’.

8. Please indicate if you consider knowledge about usage of software in the
field (user interface paths, method calls and crash report frequency statis-
tics) as a part of the concept of ‘Software Operation Knowledge’.

9. Please indicate if you consider knowledge about feedback on software in
the field by end-users (end-user feedback, customer satisfaction and feed-
back ratings) as a part of the concept of ‘Software Operation Knowledge’.

10. Do youmiss any types or forms of knowledge in the definition of the soft-
ware operation knowledge concept given above? If so, detail the type(s)
of knowledge you miss. Otherwise, explain why you think the concept
definition is complete.

FRAMEWORK COMPONENTS

11. Do you miss a particular stakeholder besides the Software Vendor and
the End-user(s)? If so, detail which stakeholders or stakeholders youmiss
and detail the role you think this stakeholder should have with respect to
the concept of software operation knowledge. Otherwise, explain why
you think the current two stakeholders are sufficient.

12. Do you miss a particular software operation knowledge phase? If so, de-
tail which phase(s) you miss and why this phase should be positioned in
the framework. Otherwise, explain why you think the current five phases
are sufficient.

13. Do you miss a particular perspective from which software operation
knowledge can be observed? If so, detail the perspective(s) you miss.
Otherwise, explain why you think the current three perspectives are suf-
ficient.

14. Do you miss any flows (possibly software operation knowledge flows,
but not in particular) in the framework? If so, detail which (knowledge)
flow(s) youmiss andwhich components are sending and receivingwhich
knowledge. Otherwise, explain why you think the current flows are suf-
ficient.

200

15. Please describe any elements you would expect being a part of the frame-
work, that are currently missing. If you don’t miss any elements, please
criticize the framework or write down general remarks.

IMPROVING ACTIVIT IES THROUGH SOK SUPPORT

16. Please indicate which of the activities within your organization would be
most supported by software performance knowledge. Motivate why.

17. Please indicate which of the activities within your organization would be
most supported by software quality knowledge. Motivate why.

18. Please indicate which of the activities within your organization would be
most supported by software usage knowledge. Motivate why.

19. Please indicate which of the activities within your organization would be
most supported by end-user feedback knowledge. Motivate why.

20. Which (positive) effects are not mentioned but are, according to you, also
a consequence of software operation knowledge utilization in your orga-
nization?

21. Please explain which factors (for instance time, knowledge, tools, cus-
tomer demands, etc.) contributed positively or negatively to the current
state of software operation knowledge utilization in your organization.

201

Appendix A — Software Operation Knowledge Survey Questions

202

B
Software Operation Knowledge
Integration Interview Questions

PROCESS IMPROVEMENT

1. Which processes have actually been improved by integration of acquired
operation information?

2. How did these processes change after integration of operation informa-
tion?

3. What were unforeseen positive side effects of this integration?

4. What were unforeseen negative side effects of this integration?

INTEGRATION OBJECTIVES

5. What were the objectives of integrating acquired operation information
in <process> before doing so?

6. Have these objectives changed during the integration of acquired opera-
tion information?

7. What were the causes and effects (consequences) of this change?

8. Was it a welcome change according to you? Why?

203

Appendix B — Software Operation Knowledge Integration Interview Questions

INTEGRATION CHALLENGES

9. Which (technical) challenges did you encounter while integrating opera-
tion information in <process> and corresponding decisions?

10. Why did they encounter?

11. Could they have been prevented?

12. How were they addressed?

13. Do you think they can be prevented in the future? If so, how?

RETURN ON INVESTMENT

14. Considering the integration process in retrospect, would you consider the
process as advantageous?

15. What would be the main Return On Investment? (time-, money-, knowl-
edge investment, etc.)

16. How would you quantify this RoI? (percentage gain)

17. In retrospect, are the results of the integration process worth the effort
you put into it? Why?

18. Did you notice any change in customer satisfaction during or after appli-
cation of the method?

19. What was the cause of this change?

LESSONS LEARNED

20. What are the general lessons that you have learned from integrating ac-
quired operation information in <process>?

21. Suppose that you have to integrate acquired operation information at an-
other, equivalent software vendor. Given the knowledge you gained dur-
ing this integration process, what would you do differently?

22. What would you advice to other, equivalent software vendors that are
about to initiate integration of operation information in <process>?

23. What would you dissuade such vendors from doing?

204

24. How could such vendors optimize the process of SOK integration?

25. What are key conditions for successful SOK integration?

FUTURE

26. How does the future look like in terms of SOK integration?

27. Will there still be a need for SOK integration? Why?

28. What will be the next steps regarding SOK integration within your orga-
nization?

29. Who should be responsible for future integration of SOK in software pro-
cesses?

30. Development manager or business manager? Internal or external?

31. What will be the major (technical) challenge for software vendors regard-
ing the future of SOK integration?

F INAL REMARKS

32. Do you have any other remarks?

33. Do you want to express anything other regarding the performed SOK in-
tegration process?

34. Do you want to express anything other regarding the lessons learned?

205

Appendix B — Software Operation Knowledge Integration Interview Questions

206

C
Software Operation Knowledge

Propagation Interview Questions

VENDOR IDENTIF ICATION

1. Number of employees

2. Number of developers

3. Number of products / services

4. Name of main product / service (most licenses / users)

5. Number of releases main product / service

6. Number of development locations

ECOSYSTEM IDENTIF ICATION

7. Software market

8. Main technology

9. What are your role(s) in the software ecosystem(s) you are participating
in?

10. Which platforms are you making use of / providing software for?

11. Which platforms are you providing?

12. Nature of keystone-niche player relationship

207

Appendix C — Software Operation Knowledge Propagation Interview Questions

13. Number of keystones

14. Number of niche players

15. Are there preferred relations with one or more keystones?

16. Are there preferred relations with certain niche players?

17. How are niche players allowed to participate in your software ecosystem?

18. Howwere you allowed to participate in your keystones’ software ecosys-
tems?

SOK PROPAGATION

19. How are software operation data / information extracted from in-the-
field software operation / end-user behavior?

20. Which software operation data / information are considered relevant and
valuable? Specific for niche players?

21. How is resulting software operation knowledge exerted? To which prac-
tices, processes or products?

22. What kind of SOK is propagated? To which actors?

23. What kind of SOK is received? From which actors?

24. Is there a strategy / protocol defined for SOK propagation?

25. Is there a strategy / protocol defined for processing received SOK?

26. Who are responsible for / involved with SOK propagation?

27. Who are responsible for / involved with SOK processing received SOK?

CHALLENGES

28. Which challenges are addressed by propagating SOK through your soft-
ware ecosystem?

29. Are SECO control strategies and policies based on SOK? (perfect thrive
strategy, make ecosystem more attractive)

30. What is the role of SOK propagation on relationships with other actors in
your software ecosystem? Are relations intensified, prolonged or dimin-
ished? Are new relations established?

208

31. What is the role of SOK propagation on your insight of (the composition
of) your software ecosystem?

32. To which ecosystem actor has the most SOK been propagated?

33. From which ecosystem actor has the most SOK been received?

34. What is the role of SOK propagation on the quality of your software?

35. What is the role of SOK propagation on portfolio and product line plan-
ning?

36. What is, in general, themost beneficial effect of SOK propagation for your
organization?

37. What was the most valuable / effective SOK received until now? Why?

38. Whatwas themost valuable / effective SOKpropagated until now? Why?

FUTURE

39. How do you see the future in terms of SOK propagation?

40. How does the ideal future in terms of SOK propagation look like?

41. Which challenges, unveiled by SOK propagation, still have to be ad-
dressed?

209

Appendix C — Software Operation Knowledge Propagation Interview Questions

210

List of Acronyms

AOP Aspect-Oriented Programming

API Application Programming Interface

CAD Computer-Aided Design

C-CCU Continuous Customer Configuration Updating

CMMI Capability Maturity Model Integration

COTS Commercial Off-The-Shelf

CRM Customer Relationship Management

ERP Enterprise Resource Planning

HRM Human Resource Management

SDK Software Development Kit

SECO Software Ecosystem

SKU Service Knowledge Utilization

SLA Service Level Agreement

SOK Software Operation Knowledge

SOS Software Operation Summary

SPM Software Product Management

SSN Software Supply Network

SWEBOK Software Engineering Body of Knowledge

UDDI Universal Description, Discovery and Integration

XML Extensible Markup Language

211

List of Acronyms

212

Publication List

In order of publication date

• Van der Schuur, H., Jansen, S., and Brinkkemper, S. (2008). Becoming
Responsive to Service Usage and Performance Changes by Applying Ser-
vice FeedbackMetrics to SoftwareMaintenance. In Evol ’08: Proceedings of
the 4th International ECRIMWorkshop on Software Evolution and Evolvability,
(pp. 53–62). IEEE Computer Society Press.

• Kristjánsson, B., and Van der Schuur, H. (2009). A Survey of Tools for
Software Operation Knowledge Acquisition. Technical Report UU-CS-
2009-028, Department of Information and Computing Sciences, Utrecht
University.

• Van der Schuur, H., Jansen, S., and Brinkkemper, S. (2010). A Refer-
ence Framework for Utilization of Software Operation Knowledge. In
SEAA ’10: Proceedings of the 36th EUROMICROConference on Software Engi-
neering and Advanced Applications, (pp. 245–254). IEEE Computer Society
Press.

• Van der Schuur, H., Jansen, S., and Brinkkemper, S. (2011). Reducing
Maintenance Effort through Software Operation Knowledge: An Eclec-
tic Empirical Evaluation. In CSMR ’11: Proceedings of the 15th European
Conference on Software Maintenance and Reengineering, (pp. 201–210). IEEE
Computer Society Press.

• Van der Schuur, H., Jansen, S., and Brinkkemper, S. (2011). If the SOK
Fits, Wear It: Pragmatic Process Improvement through Software Opera-
tion Knowledge. In PROFES ’11: Proceedings of the 12th International Con-
ference on Product Focused Software Development and Process Improvement,
(pp. 306–321). Springer.

• Van der Schuur, H., Jansen, S., and Brinkkemper, S. (2011). Sending Out
a Software Operation Summary: Leveraging Software Operation Knowl-
edge for Prioritization of Maintenance Tasks. In MENSURA ’11: Proceed-
ings of the 6th International Conference on Software Process and Product Mea-
surement. IEEE Computer Society Press.

213

Publication List

• Van der Schuur, H., Jansen, S., and Brinkkemper, S. (2011). The Power of
Propagation: On the Role of Software Operation Knowledge within Soft-
ware Ecosystems. InMEDES ’11: Proceedings of the International Conference
on Management of Emergent Digital EcoSystems. ACM Press.

214

Summary

Although the software industry is flourishing, and software-producing orga-
nizations strive for high levels of end-user satisfaction, these organizations do
only limitedly recognize and use knowledge of the in-the-field operation of
their software (e.g. software operation knowledge or SOK). Less than one-
third of these organizations makes use of crash and usage feedback reports
to acquire knowledge of the in-the-field behavior of their software and end-
users. Furthermore, the concept of software operation knowledge has only
been vaguely described, and is underexposed till date. For example, virtually
no techniques or methods exist for structurally using such knowledge in pro-
cesses implemented at software-producing organizations.

Consequently, an emerging need is observed for a framework that guides
software-producing organizations in improving their software processes
through knowledge of the in-the-field behavior of their software and end-users.
In this dissertation research, a framework is presented that provides and struc-
tures directions for identification, acquisition, integration, presentation anduti-
lization of software operation knowledge. The framework, as well as the tools,
techniques and methods that are presented in this dissertation, aid software-
producing organizations in increasing the efficiency of their software processes.

This dissertation is divided in four parts. After the introductory part, which
describes research triggers, questions andmethods, the SOK concept is defined.
Also, the SOK framework is presented: a structure that describes parties, per-
spectives and life cycle processes (see figure) related to knowledge of in-the-
field software operation. The SOK concept is then further established by iden-
tification and classification of operational software operation knowledge prac-
tices of software-producing organizations in software ecosystems. The third
part of this dissertation is focused on process improvement through knowledge
of in-the-field software operation. A novel technique for generic recording and
visualization of in-the-field software operation is presented. We show that this
technique enables software vendors to obtain a uniform insight in the operation
of their software in the field, and contributes to reduction of software mainte-
nance efforts. Also, we present a template method for situational integration
of software operation information in software processes. We show that by us-
ing the template method, software-producing organizations can improve their
particular software processes with acquired software operation information.

215

Summary

Identification of SOK
utilization goals and
associated operation
knowledge demands

Utilization PresentationIntegrationAcquisition Identification

Acquisition and mining of
software operation data,
resulting in software
operation information

Integration of operation
information in product
software processes

Presentation of (integrated)
software operation
information

Structural usage of
software operation
knowledge in software
processes

Data Information Knowledge

interpretationrelation

Figure Software operation knowledge life cycle

Another artifact that is presented in this dissertation is the software operation
summary (SOS), a medium for presentation of software operation information.
We show that the summary increases awareness of in-the-field software oper-
ation throughout software-producing organizations, and demonstrate that it
contributes to reaching consensus on software maintenance task prioritization.
Finally, service knowledge utilization (SKU) is introduced as an approach to
increase a software vendor’s flexibility, as well as its responsiveness to changes
in performance and usage of its service-based, online software. The last part
of this dissertation provides answers to the formulated research questions, as
well as a reflection on the hermeneutic process we experienced throughout the
construction of the artifacts that are presented in this dissertation.

216

Nederlandse samenvatting

Hoewel de softwareindustrie floreert, en softwarebedrijven streven naar hoge
klanttevredenheid, zijn deze bedrijven slechts beperkt in staat om kennis van
het in-het-veld functioneren van hun software (ofwel: softwarefunctionerings-
kennis of SOK) te herkennen en te gebruiken. Minder dan één derde van de
softwarebedrijvenmaakt bijvoorbeeld gebruik van crash- en gebruiksfeedback-
rapporten om kennis van het in-het-veld gedrag van hun software en eindge-
bruikers te verwerven. Daarnaast is het concept van softwarefunctionerings-
kennis tot nu toe slechts vaag beschreven en onderbelicht. Er bestaan bijvoor-
beeld praktisch geen technieken ofmethoden voor het integreren van dergelijke
kennis in de bedrijfsprocessen van softwarebedrijven.

Als gevolg hiervan wordt een opkomende vraag waargenomen naar een
raamwerk dat softwarebedrijven begeleidt in het verbeteren van hun processen
door middel van kennis van het in-het-veld gedrag van hun software en eind-
gebruikers. In dit proefschrift wordt een raamwerk gepresenteerd dat voorziet,
en structuur brengt in richtlijnen voor identificatie, acquisitie, integratie, pre-
sentatie en benutting van softwarefunctioneringskennis. Het raamwerk, alsook
de tools, technieken enmethoden die in dit proefschrift worden gepresenteerd,
helpen softwarebedrijven in het verhogen van de efficiëntie van hun bedrijfs-
processen.

Dit proefschrift is onderverdeeld in vier delen. Na het inleidende deel, dat
onderzoeksaanleidingen, -vragen en -methoden beschrijft, wordt het SOK con-
cept gedefinieerd. Ook wordt het SOK raamwerk gepresenteerd: een struc-
tuur die partijen, perspectieven en levenscyclusprocessen beschrijft die gere-
lateerd zijn aan kennis van in-het-veld softwarefunctioneren. Het concept van
softwarefunctioneringskennis wordt vervolgens verder tot stand gebracht door
operationele softwarefunctioneringskennispraktijken van softwarebedrijven in
software-ecosystemen te identificeren en te classificeren. Het derde deel van
dit proefschrift is gericht op procesverbetering door middel van kennis van in-
het-veld softwarefunctioneren. Een nieuwe techniek voor generieke registratie
en visualisatie van in-het-veld softwarefunctioneren wordt gepresenteerd. We
laten zien dat deze techniek softwarebedrijven in staat stelt om een uniform in-
zicht in het functioneren van hun software in het veld te verkrijgen, en bijdraagt
aan vermindering van softwareonderhoudsinspanningen. Ook presenterenwe
een sjabloonmethode voor situationele integratie van softwarefunctionerings-

217

Nederlandse samenvatting

Identificatie van SOK
aanwendingsdoelen en
bijbehorende vraag naar
functioneringskennis

Benutting PresentatieIntegratieAcquisitie Identificatie

Acquisitie en delving van
softwarefunctionerings-
data, resulterend in
softwarefunctionerings-
informatie

Integratie van
functionerings-informatie
in productsoftware-
processen

Presentatie van
(geïntegreerde)
softwarefunctionerings-
informatie

Structureel gebruik van
softwarefunctionerings-
kennis in software-
processen

Data Informatie Kennis

interpretatierelatie

Figuur Levenscyclus van softwarefunctioneringskennis

informatie in bedrijfsprocessen. We laten zien dat door de sjabloonmethode te
gebruiken, softwarebedrijven hun specifieke bedrijfsprocessen kunnen verbe-
teren met verkregen softwarefunctioneringsinformatie. Een ander artefact dat
in dit proefschrift wordt gepresenteerd is het softwarefunctioneringsoverzicht
(SOS), eenmediumvoor presentatie van softwarefunctioneringsinformatie. We
laten zien dat dit overzicht het besef van in-het-veld softwarefunctioneren bin-
nen softwarebedrijven verhoogt, en tonen aan dat het overzicht bijdraagt aan
het bereiken van consensus over prioritering van softwareonderhoudstaken.
Tenslotte wordt servicekennisbenutting (SKU) geïntroduceerd als een manier
om de flexibiliteit van een softwarebedrijf, alsook haar responsiviteit op veran-
deringen in prestatie en gebruik van haar servicegebaseerde, online software,
te verhogen. Het laatste deel van dit proefschrift biedt antwoorden op de gefor-
muleerde onderzoeksvragen, alsook een reflectie op het hermeneutisch proces
dat we ervaren hebben gedurende de constructie van de artefacten die in dit
proefschrift worden gepresenteerd.

218

Curriculum Vitæ

Henk van der Schuur was born on March 29, 1986 in the Netherlands. From
2003 to 2006, he studied Computer Science at Utrecht University. He obtained
his Master’s degree in Business Informatics in September, 2008. His Master’s
thesis, entitled ‘SKU: Software Vendor Meets End-user’ was nominated for the
Utrecht University Thesis Award. He started his PhD research as an external
PhD researcher at Stabiplan B.V. In July, 2011, he became employed by AFAS
ERP Software B.V. in the role of software product manager. He successfully
finished his PhD research in November, 2011.

The research and educational activities of Henk van der Schuur focus on
the areas of software feedback, software process improvement and software
product management. In addition, he provides lectures, training and coaching
in these areas.

219

Curriculum Vitæ

220

SIKS PhD Theses

1998-1 Johan van den Akker (CWI)
DEGAS — An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of
Business Conversations within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999-1Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism for Discrete Reallocation

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UvA)
Sociaal-organisatorische gevolgen van kennistechnologie; een procesbenadering en actorperspectief

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations, Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

221

SIKS PhD Theses

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models, Views of Packages as Classes

2001-10Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice —
BRAHMS: a multiagent modeling and simulation language for work practice analysis and design

2001-11 TomM. van Engers (VU)
Knowledge Management: The Role of Mental Models in Business Systems Design

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative E-Commerce Ideas

2002-09Willem-Jan van den Heuvel (KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (UvA)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UvA)
Understanding, Modeling, and Improving Main-Memory Database Performance

222

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UvA)
Causation in Artificial Intelligence and Law— Amodelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem — Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16Menzo Windhouwer (CWI)
Feature Grammar Systems — Incremental Maintenance of Indexes to Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UvA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs,
een opstap naar abstract denken, vooral voor meisjes

2004-08 Joop Verbeek (UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

2004-09Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

223

SIKS PhD Theses

2004-10 Suzanne Kabel (UvA)
Knowledge-rich indexing of learning-objects

2004-11Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

2005-01 Floor Verdenius (UvA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UvA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UvA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering — A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

224

2005-19Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by Exploiting Application Semantics

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UvA)
The role of metacognitive skills in learning to solve problems

2006-04Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling — Intelligent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching — balancing efficiency and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again — Analyzing User Behavior on the Web

2006-09Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation — Towards an e-cology of people, our technological environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign — towards a Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UvA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

225

SIKS PhD Theses

2006-26 Vojkan Mihajloviç (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UvA)
Focused Information Access using XML Element Retrieval

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy:
a Legislative Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UvA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanoviç (UT)
To Whom It May Concern — Addressee Identification in Face-to-Face Meetings

2007-08Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support:
A Rational Approach to Dynamic Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs.
Formal Investigations in Institutions and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on residential adoption and usage of
broadband internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina RamÃŋrez Camps (CWI)
Structural Features in XML Retrieval

226

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

2008-01 Katalin Boer-SorbÃąn (EUR)
Agent-Based Simulation of Financial Markets: A modular, continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UvA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data — towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware information systems from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-effective

2008-10Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UvA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in First-Order Domains

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and Performance of Focused Text Search

2008-20 Rex Arendsen (UvA)
Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie van
elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UvA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair using Spender-signed Currency

2008-26Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

227

SIKS PhD Theses

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines — Of Annotators, Embodied Agents, Users, and Other Humans

2008-30Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Observable Markov Decision Processes

2008-33 Frank Terpstra (UvA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks —
Based on Knowledge, Cognition, and Quality

2009-06Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UvA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UvA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
perating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled ontologies
(making ontologies work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UvA)
Ontology Representation — Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

228

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VU)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management through Relational Mapping

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflection on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented Applications

2009-30Marcin Zukowski (CWI)
Balancing vectorized query execution with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UvA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Architects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management: An Incremental Method Engineering Approach

2009-35Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling

2009-36Marco Kalz (OUN)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata ecology for learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution — A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

2010-01Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink (UT)
Work flows in Life Science

2010-03 Joost Geurts (CWI)
A Document Engineering Model and Processing Framework for Multimedia documents

229

SIKS PhD Theses

2010-04 Olga Kulyk (UT)
Do You KnowWhat I Know? Situational Awareness of Co-located Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries and Retrieval Systems

2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)
Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory Framework of Free Software.
Protecting user freedoms in a world of software communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How Improv Informs Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data degradation

2010-22Michiel Hildebrand (CWI)
End-user Support for Access to Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos (CWI)
Database Cracking: Towards Auto-tuning Database Kernels

2010-30Marieke van Erp (UvT)
Accessing Natural History — Discoveries in data cleaning, structuring, and retrieval

2010-31 Victor de Boer (UvA)
Ontology Enrichment from Heterogeneous Sources on the Web

230

2010-32Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture: Automatically solving Interoperability Problems

2010-33 Robin Aly (UT)
Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based Biomedical Information Retrieval

2010-36 Jose Janssen (OU)
Paving the Way for Lifelong Learning;
Facilitating competence development through a learning path specification

2010-37 Niels Lohmann (TUE)
Correctness of services and their composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in virtual agents

2010-40Mark van Assem (VU)
Converting and Integrating Vocabularies for the Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a multi-supplier setting — the computational e3-service approach

2010-43 Peter van Kranenburg (UU)
A Computational Approach to Content-Based Retrieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)
An Approach towards Context-sensitive and User-adapted Access to Heterogeneous Data Sources,
Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants: Challenges, Techniques, Examples

2010-48Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2010-49 Jahn-Takeshi Saito (UM)
Solving difficult game positions

2010-50 Bouke Huurnink (UvA)
Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)
Understanding and supporting information seeking tasks in multiple sources

2010-52 Peter-Paul van Maanen (VU)
Adaptive Support for Human-Computer Teams
Exploring the Use of Cognitive Models of Trust and Attention

2010-53 Edgar Meij (UvA)
Combining Concepts and Language Models for Information Access

2011-01 Botond Cseke (RUN)
Variational Algorithms for Bayesian Inference in Latent Gaussian Models

2011-02 Nick Tinnemeier (UU)
Work flows in Life Science

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification of Component-Based Information Systems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning;
Formal analysis and empirical evaluation of temporal-difference learning algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of Age — Increasing the Performance of an Emerging Discipline

231

SIKS PhD Theses

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced Recommendations in Cultural Heritage

2011-07 Yujia Cao (UT)
Multimodal Information Presentation for High Load Human Computer Interaction

2011-08 Nieske Vergunst (UU)
BDI-based Generation of Robust Task-Oriented Dialogues 2011-09 Tim de Jong (OU)
Contextualised Mobile Media for Learning

2011-10 Bart Bogaert (UvT)
Cloud Content Contention

2011-11 Dhaval Vyas (UT)
Designing for Awareness: An Experience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed Process Mining

2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent Scheduling for Airport Ground Handling

2011-14Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2011-15Marijn Koolen (UvA)
The Meaning of Structure: the Value of Link Evidence for Information Retrieval

2011-16Maarten Schadd (UM)
Selective Search in Games of Different Complexity

2011-17 Jiyin He (UvA)
Exploring Topic Structure: Coherence, Diversity and Relatedness

2011-18Mark Ponsen (UM)
Strategic Decision-Making in Complex Games

2011-19 Ellen Rusman (OU)
The Mind’s Eye on Personal Profiles

2011-20 Qing Gu (VU)
Guiding service-oriented software engineering — A view-based approach

2011-21 Linda Terlouw (TUD)
Modularization and Specification of Service-Oriented Systems

2011-22 Junte Zhang (UvA)
System Evaluation of Archival Description and Access

2011-23Wouter Weerkamp (UvA)
Finding People and their Utterances in Social Media

2011-24 Herwin van Welbergen (UT)
Behavior Generation for Interpersonal Coordination with Virtual Humans On Specifying,
Scheduling and Realizing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)
Analysis and Validation of Models for Trust Dynamics

2011-26Matthijs Aart Pontier (VU)
Virtual Agents for Human Communication —
Emotion Regulation and Involvement-Distance Trade-Offs in Embodied Conversational Agents and Robots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization through autonomous management of design patterns

2011-28 Rianne Kaptein (UvA)
Effective Focused Retrieval by Exploiting Query Context and Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP): Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

232

2011-34 Paolo Turrini (UU)
Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations

2011-35Maaike Harbers (UU)
Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design: a cognitive approach

2011-37 Adriana Birlutiu (RUN)
Machine Learning for Pairwise Data, Applications for Preference Learning
and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents in Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge Management in Global Software Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced Distributed Data Access Control

2011-42Michal Sindlar (UU)
In the Eye of the Beholder: Explaining Behavior through Mental State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through Software Operation Knowledge

233

	Contents
	I Introduction
	Introduction
	Motivation
	Scientific Relevance
	Positioning the Research
	Research Approach
	Dissertation Outline

	II The Concept of Software Operation Knowledge
	A Reference Framework for SOK Utilization
	Introduction
	Software Operation Knowledge (SOK)
	SOK Framework
	Empirical Evaluation
	Questionnaire Results
	Case Study Results
	Threats to Validity
	Conclusions and Future Work

	On the Role of SOK within Software Ecosystems
	Introduction
	SOK Propagation within Software Ecosystems
	Practice Identification Approach
	Identified SOK Propagation Practices
	Analysis of SOK Propagation Practices
	Conclusions and Future Work

	III Process Improvement through Software Operation Knowledge
	Reducing Maintenance Effort through SOK
	Introduction
	Related Work
	SOK Acquisition and Presentation
	Nuntia Tool
	Empirical Evaluation
	Threats to Validity
	Conclusions and Future Work

	Pragmatic Process Improvement through SOK
	Introduction
	Related Work
	Research Approach
	SOK Integration
	Three Pragmatic In-the-field Method Instantiations
	Conclusions and Future Work

	Leveraging SOK for Prioritization of Maintenance Tasks
	Introduction
	Software Operation Summary
	Research Approach
	Maintenance Task Prioritization Survey
	Analysis of Survey Results
	Sending Out an SOS: Case Study Results
	Threats to Validity
	Related Work
	Conclusions and Future Work

	Becoming Responsive to Service Usage and Performance Changes
	Introduction
	Service Knowledge Utilization
	SKU Report Indices
	Research Approach
	SKU Software Prototype
	Results
	Conclusions and Future Research

	IV Conclusion
	Conclusion
	Contributions and Evaluation
	Implications
	Reflection
	Limitations and Future Research

	Bibliography
	Software Operation Knowledge Survey Questions
	Software Operation Knowledge Integration Interview Questions
	Software Operation Knowledge Propagation Interview Questions
	List of Acronyms
	Publication List
	Summary
	Nederlandse samenvatting
	Curriculum Vitæ
	SIKS PhD Theses

